BoTorch项目中FixedFeatureAcquisitionFunction维度处理问题分析
问题背景
在BoTorch项目的多保真度优化场景中,当使用FixedFeatureAcquisitionFunction处理固定特征时,发现了一个关键的维度计算错误。这个问题影响了包括qMultiFidelityKnowledgeGradient在内的多个知识梯度类获取函数。
问题本质
在optimize_objective函数中,当处理固定特征时,计算自由特征维度的逻辑存在错误。具体表现为:
- 输入边界张量
bounds的形状应为(2, d),其中d是特征维度数 - 当前代码使用
len(bounds)获取维度数,这会返回2(因为bounds是二维张量) - 正确做法应该是使用
bounds.shape[-1]来获取特征维度数d
这个错误导致后续的维度计算完全错误,最终在FixedFeatureAcquisitionFunction的_construct_X_full方法中抛出维度不匹配的异常。
影响范围
该问题影响所有使用optimize_objective函数的获取函数,包括:
- qKnowledgeGradient
- qHypervolumeKnowledgeGradient
- qMultiFidelityKnowledgeGradient
- qMultiFidelityHypervolumeKnowledgeGradient
技术细节分析
在多保真度优化场景中,通常会有一个或多个维度被指定为"保真度"维度。当使用target_fidelities参数指定目标保真度时,这些维度会被固定,从而触发FixedFeatureAcquisitionFunction的使用。
错误的核心在于维度计算方式。在Python中,对二维张量使用len()函数会返回第一维的大小,而不是特征维度数。例如,对于形状为(2,9)的边界张量:
len(bounds)返回2bounds.shape[-1]返回9(正确的特征维度数)
当有固定特征时,代码试图从[0,1]中减去固定特征的键,而不是从完整的特征索引范围[0,...,d-1]中减去,这显然会导致维度计算错误。
解决方案
正确的实现应该使用张量的shape属性来获取特征维度数。修复后的代码应该如下:
free_feature_dims = list(range(bounds.shape[-1]) - fixed_features.keys()
这样就能正确计算出剩余的自由特征维度。
实际应用中的表现
在实际应用中,这个问题表现为当尝试使用多保真度知识梯度获取函数时,系统会抛出ValueError,提示输入的特征维度与预期不符。例如,在一个有8个位置维度和1个保真度维度的场景中,错误信息会显示:
Feature dimension d' (2) of input must be d - d_f (8).
这表明系统错误地认为输入只有2个维度,而实际上应该有8个自由维度(总维度9减去1个固定保真度维度)。
总结
这个bug虽然看似简单,但影响范围较广,特别是在多保真度优化场景中。它提醒我们在处理张量维度时需要特别注意:
- 明确区分张量的不同维度含义
- 使用shape属性而非len()函数获取特征维度数
- 在涉及固定特征的场景中,确保维度计算逻辑正确
该问题已在最新版本的BoTorch中得到修复,用户在使用多保真度优化功能时可以正常工作了。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00