Apache Doris:用单一组件替代ClickHouse、MySQL、Presto和HBase的技术实践
2025-06-27 10:37:12作者:盛欣凯Ernestine
背景:保险行业的数据分析挑战
在保险行业数字化转型过程中,数据分析平台需要同时满足三类核心需求:
- 客户自助查询:保单查询服务需要支持亿级数据量的毫秒级响应
- 多维分析:业务分析需要灵活的多维度组合查询能力
- 实时看板:管理层需要实时掌握业务趋势和指标对比
传统方案采用多组件组合架构,但面临着系统复杂、维护成本高、实时性不足等问题。本文将深入分析如何通过Apache Doris构建统一OLAP平台的技术实践。
传统架构的痛点分析
组件繁多的Lambda架构
典型的数据仓库架构包含以下组件:
- 实时链路:Flink CDC + Kafka
- 离线链路:Sqoop/DataX + Hive
- 存储层:
- ClickHouse:处理扁平表分析
- MySQL:存储计算结果
- HBase:主键查询
- Presto:交互式分析
各组件局限性
组件 | 主要问题 |
---|---|
ClickHouse | 星型模型支持差,数据更新需要全表重写 |
MySQL | 数据量增长后性能急剧下降 |
HBase | 不支持二级索引,SQL能力弱 |
Presto | 需要与Hive配合使用,实时性不足 |
这种架构导致:
- 运维复杂度指数级上升
- 数据一致性难以保证
- 开发人员需要掌握多种技术栈
- 端到端延迟难以控制
Apache Doris的架构革新
统一架构设计
Apache Doris通过以下特性实现架构简化:
- 实时离线统一:支持流批一体数据处理
- 多模分析引擎:同时支持OLAP和KV查询
- 统一SQL网关:通过标准SQL接口访问所有数据
关键技术突破
1. 高效数据摄入
- Flink CDC实时同步:亚秒级延迟
- 批量导入:支持HDFS/S3等离线数据源
- 事务写入:通过Label机制保证Exactly-Once
2. 混合负载处理
-- 同时执行点查和复杂分析
SELECT * FROM policies WHERE policy_id = '12345'; -- 毫秒级响应
SELECT product_type,
AVG(premium)
FROM policies
WHERE issue_date BETWEEN '2023-01-01' AND '2023-12-31'
GROUP BY product_type; -- 秒级完成十亿级分析
3. 智能加速技术
- Merge-on-Write:实时更新不影响查询性能
- 多层索引:
- 主键索引:优化点查询
- 倒排索引:加速文本检索
- 物化视图:预计算关键指标
实际收益对比
指标 | 传统架构 | Doris架构 | 提升幅度 |
---|---|---|---|
组件数量 | 5+ | 1 | 80%减少 |
查询延迟 | 100ms-10s | 10ms-1s | 10倍提升 |
运维成本 | 高 | 低 | 70%降低 |
数据时效性 | 分钟级 | 秒级 | 实时性提升 |
最佳实践建议
-
数据建模:
- 热数据采用Duplicate Key模型
- 需要更新的表使用Unique Key模型
- 大表关联使用Colocation Group
-
性能调优:
-- 启用并行查询 SET parallel_fragment_exec_instance_num = 8; -- 优化内存配置 SET exec_mem_limit = 8589934592;
-
高可用保障:
- 配置跨集群复制(CCR)
- 启用Binlog日志
- 设置合理的副本数(建议3副本)
总结
Apache Doris通过其融合架构设计,成功解决了保险行业在实时数据分析、高并发查询和灵活报表等方面的核心需求。相比传统多组件方案,Doris在简化架构的同时提供了更高的性能和更低的运维成本,是构建现代数据仓库的理想选择。随着2.0版本的发布,其在实时更新、多租户管理等企业级特性上的持续增强,将为更多行业场景提供优质的技术解决方案。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
28