osquery在Ubuntu系统中查询Firefox扩展的问题分析
问题背景
在使用osquery 5.12.1版本对Ubuntu 22.04和24.04系统进行安全审计时,发现firefox_addons虚拟表查询返回空结果,而预期应该返回系统中安装的Firefox扩展信息。这是一个值得关注的问题,因为浏览器扩展监控是企业安全态势管理的重要组成部分。
技术分析
经过深入调查,发现这个问题可能由以下几个技术原因导致:
-
用户权限问题:osquery设计上会基于执行用户的UID来查询对应用户的Firefox扩展。当以root用户执行查询时,由于root用户通常不会直接使用Firefox,因此会返回空结果。这是预期行为而非缺陷。
-
Firefox安装方式差异:在Ubuntu系统中,Firefox可能通过多种方式安装:
- 传统的apt包管理安装
- Snap包安装
- Flatpak安装 不同的安装方式会导致扩展配置文件存储位置不同,osquery需要正确识别这些路径。
-
配置文件读取失败:当osquery无法找到或读取Firefox的扩展配置文件时,也会导致查询返回空结果。这可能发生在自定义安装路径或非标准配置情况下。
解决方案
针对上述问题,建议采取以下解决方案:
-
多用户联合查询:使用osquery的跨表查询功能,可以同时获取所有用户的扩展信息:
SELECT username, name AS addon_name FROM users CROSS JOIN firefox_addons USING (uid);这种方法即使以root身份执行也能获取完整信息。
-
详细日志分析:使用
--verbose参数运行osquery,检查是否有"Failed to read the extensions file"等错误信息,这有助于定位具体的读取失败原因。 -
路径适配:对于非标准安装的Firefox,可能需要调整osquery的查询逻辑或配置文件,使其能够识别特定安装路径下的扩展信息。
最佳实践建议
-
在企业环境中部署osquery时,应该建立完整的测试流程,验证所有安全相关表的查询功能。
-
对于浏览器扩展监控,建议结合
firefox_addons表和用户表进行综合分析,避免因权限问题导致监控盲区。 -
定期检查osquery的更新日志,特别是虚拟表相关的改进,确保使用最新版本获得最佳兼容性。
结论
osquery在Ubuntu系统上查询Firefox扩展的功能总体上是可靠的,但需要正确理解其设计原理和使用方法。通过合理的查询方式和配置调整,可以确保获取完整的浏览器扩展信息,为安全团队提供有效的端点可见性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00