IntelliJ平台插件模板中Gradle配置问题的解决方案
背景介绍
在使用IntelliJ平台插件模板开发插件时,开发者可能会遇到Gradle构建过程中的配置问题。特别是在升级到IntelliJ IDEA Plugin 2.x版本后,某些Gradle任务的配置方式发生了变化,导致构建失败。
问题现象
当开发者尝试使用prepareSandbox任务时,可能会遇到以下错误信息:
Invocation of 'Task.project' by task ':prepareSandbox' at execution time is unsupported.
这个错误通常发生在Gradle配置缓存启用时,表明在任务执行阶段不恰当地访问了项目(project)属性。
问题根源分析
在Gradle的配置缓存机制下,任务执行阶段访问project属性是被禁止的,因为这会导致配置缓存失效。prepareSandbox任务在doFirst闭包中直接引用了rootProject.name和project.version,这违反了Gradle的最佳实践。
解决方案
正确的做法是在配置阶段就确定这些值,而不是在执行阶段动态获取。具体修改如下:
- 在build.gradle.kts文件顶部显式设置项目版本信息:
group = providers.gradleProperty("pluginGroup").get()
version = providers.gradleProperty("pluginVersion").get()
- 修改prepareSandbox任务的配置,避免在执行阶段访问project属性:
prepareSandbox {
if (properties("skipProguard").isPresent.not()) {
dependsOn("proguard")
doFirst {
val original = File("build/libs/${rootProject.name}-${version}.jar")
val obfuscated = File("build/${rootProject.name}-obfuscated.jar")
// 其余处理逻辑保持不变
}
}
}
技术要点
-
Gradle配置缓存:这是Gradle的一项性能优化功能,可以缓存任务的配置阶段结果。为了支持这一特性,任务在执行阶段不能访问可变状态。
-
配置阶段与执行阶段:Gradle构建分为配置阶段和执行阶段。配置阶段应该只包含确定性的逻辑,而执行阶段则执行实际的工作。
-
属性访问时机:项目属性(如version、name等)应该在配置阶段就确定下来,而不是在执行阶段动态获取。
最佳实践建议
-
对于插件开发,建议始终在文件顶部显式设置group和version属性。
-
在任务配置中,尽量避免在执行阶段(doFirst/doLast)访问项目属性。
-
使用providers API来延迟属性值的获取,同时保持配置缓存兼容性。
-
对于需要根据构建参数动态确定的属性,可以在配置阶段通过gradleProperty或environment来获取。
总结
通过正确设置项目属性并在适当的阶段访问它们,可以避免Gradle配置缓存相关的问题,同时提高构建性能。这一解决方案不仅适用于IntelliJ平台插件开发,也适用于一般的Gradle项目配置。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00