HWCPipe 项目使用教程
2024-09-18 18:21:47作者:翟江哲Frasier
1. 项目介绍
1.1 项目概述
HWCPipe 是一个用于从 Arm® Immortalis™ 和 Arm Mali™ GPU 中采样性能计数器的实用库。该库允许应用程序开发者使用现有的内部性能工具来分析和优化其应用程序的工作负载,并能够在应用程序的用户界面中实时显示性能数据。
1.2 功能特点
- 性能计数器采样:支持从 Arm GPU 中采样性能计数器。
- 兼容性:支持从 Mali-T700 系列开始的 Arm GPU 产品。
- 开源许可:项目基于 MIT 许可证,允许自由使用和修改。
1.3 支持的设备
该库旨在支持所有从 Mali-T700 系列开始的 Arm GPU 产品,确保开发者能够覆盖当今使用的大多数智能手机上的 Arm GPU。
2. 项目快速启动
2.1 环境准备
确保你的开发环境已经安装了以下工具:
- CMake
- Git
2.2 下载项目
使用 Git 克隆项目到本地:
git clone https://github.com/ARM-software/HWCPipe.git
2.3 构建项目
进入项目目录并使用 CMake 进行构建:
cd HWCPipe
mkdir build
cd build
cmake ..
make
2.4 集成到项目
在你的 CMakeLists.txt 文件中添加以下内容,将 HWCPipe 集成到你的项目中:
add_subdirectory(path/to/HWCPipe)
target_link_libraries(your_project_name hwcpipe)
2.5 使用示例
以下是一个简单的使用示例,展示如何启动和停止 HWCPipe:
#include "hwcpipe.h"
int main() {
// 初始化 HWCPipe
hwcpipe::HWCPipe h;
// 启动 HWCPipe
h.run();
// 主循环
while (main_loop) {
// 采样计数器
auto measurements = h.sample();
// 检查 CPU 测量是否可用
if (measurements.cpu) {
// 查找计数器
const auto &counter = measurements.cpu->find(CpuCounter::Cycles);
if (counter != measurements.cpu->end()) {
// 获取计数器数据
auto value = counter->second.get<float>();
}
}
}
// 停止 HWCPipe
h.stop();
return 0;
}
3. 应用案例和最佳实践
3.1 应用案例
3.1.1 游戏性能优化
在游戏开发中,使用 HWCPipe 可以实时监控 GPU 的性能计数器,帮助开发者识别和解决性能瓶颈,从而提升游戏的流畅度和用户体验。
3.1.2 实时数据分析
在需要实时数据分析的应用中,HWCPipe 可以帮助开发者收集和分析 GPU 的性能数据,从而优化数据处理流程,提高系统的响应速度。
3.2 最佳实践
- 定期采样:在主循环中定期调用
sample()
方法,以确保性能数据的实时性和准确性。 - 平台检测:在初始化 HWCPipe 时,确保平台支持所需的性能计数器,避免在不受支持的平台上运行。
- 错误处理:在采样和处理性能数据时,添加适当的错误处理机制,以应对可能的异常情况。
4. 典型生态项目
4.1 Arm Streamline 性能分析器
Arm Streamline 是一个全面的性能分析工具,支持与 HWCPipe 集成,提供更深入的性能分析和优化建议。
4.2 Mali 开发者工具
Mali 开发者工具集成了 HWCPipe,为开发者提供了一套完整的工具链,用于分析和优化 Mali GPU 的性能。
4.3 Android 性能优化工具
Android 平台上的性能优化工具,如 Android Profiler,可以与 HWCPipe 结合使用,帮助开发者更好地理解和优化 Android 应用程序的性能。
通过以上模块的介绍,开发者可以快速上手并充分利用 HWCPipe 项目,实现对 Arm GPU 性能的深入分析和优化。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0113AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
217
2.23 K

暂无简介
Dart
523
116

React Native鸿蒙化仓库
JavaScript
210
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
982
580

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
564
87

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
33
0