HWCPipe 项目使用教程
2024-09-18 17:15:52作者:翟江哲Frasier
1. 项目介绍
1.1 项目概述
HWCPipe 是一个用于从 Arm® Immortalis™ 和 Arm Mali™ GPU 中采样性能计数器的实用库。该库允许应用程序开发者使用现有的内部性能工具来分析和优化其应用程序的工作负载,并能够在应用程序的用户界面中实时显示性能数据。
1.2 功能特点
- 性能计数器采样:支持从 Arm GPU 中采样性能计数器。
- 兼容性:支持从 Mali-T700 系列开始的 Arm GPU 产品。
- 开源许可:项目基于 MIT 许可证,允许自由使用和修改。
1.3 支持的设备
该库旨在支持所有从 Mali-T700 系列开始的 Arm GPU 产品,确保开发者能够覆盖当今使用的大多数智能手机上的 Arm GPU。
2. 项目快速启动
2.1 环境准备
确保你的开发环境已经安装了以下工具:
- CMake
- Git
2.2 下载项目
使用 Git 克隆项目到本地:
git clone https://github.com/ARM-software/HWCPipe.git
2.3 构建项目
进入项目目录并使用 CMake 进行构建:
cd HWCPipe
mkdir build
cd build
cmake ..
make
2.4 集成到项目
在你的 CMakeLists.txt 文件中添加以下内容,将 HWCPipe 集成到你的项目中:
add_subdirectory(path/to/HWCPipe)
target_link_libraries(your_project_name hwcpipe)
2.5 使用示例
以下是一个简单的使用示例,展示如何启动和停止 HWCPipe:
#include "hwcpipe.h"
int main() {
// 初始化 HWCPipe
hwcpipe::HWCPipe h;
// 启动 HWCPipe
h.run();
// 主循环
while (main_loop) {
// 采样计数器
auto measurements = h.sample();
// 检查 CPU 测量是否可用
if (measurements.cpu) {
// 查找计数器
const auto &counter = measurements.cpu->find(CpuCounter::Cycles);
if (counter != measurements.cpu->end()) {
// 获取计数器数据
auto value = counter->second.get<float>();
}
}
}
// 停止 HWCPipe
h.stop();
return 0;
}
3. 应用案例和最佳实践
3.1 应用案例
3.1.1 游戏性能优化
在游戏开发中,使用 HWCPipe 可以实时监控 GPU 的性能计数器,帮助开发者识别和解决性能瓶颈,从而提升游戏的流畅度和用户体验。
3.1.2 实时数据分析
在需要实时数据分析的应用中,HWCPipe 可以帮助开发者收集和分析 GPU 的性能数据,从而优化数据处理流程,提高系统的响应速度。
3.2 最佳实践
- 定期采样:在主循环中定期调用
sample()方法,以确保性能数据的实时性和准确性。 - 平台检测:在初始化 HWCPipe 时,确保平台支持所需的性能计数器,避免在不受支持的平台上运行。
- 错误处理:在采样和处理性能数据时,添加适当的错误处理机制,以应对可能的异常情况。
4. 典型生态项目
4.1 Arm Streamline 性能分析器
Arm Streamline 是一个全面的性能分析工具,支持与 HWCPipe 集成,提供更深入的性能分析和优化建议。
4.2 Mali 开发者工具
Mali 开发者工具集成了 HWCPipe,为开发者提供了一套完整的工具链,用于分析和优化 Mali GPU 的性能。
4.3 Android 性能优化工具
Android 平台上的性能优化工具,如 Android Profiler,可以与 HWCPipe 结合使用,帮助开发者更好地理解和优化 Android 应用程序的性能。
通过以上模块的介绍,开发者可以快速上手并充分利用 HWCPipe 项目,实现对 Arm GPU 性能的深入分析和优化。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328