TabNet模型迁移学习实践:从预训练到微调
2025-06-28 07:48:03作者:何将鹤
概述
在机器学习实践中,我们经常会遇到这样的情况:目标领域的数据量有限,但相关领域存在大量可用数据。本文将以TabNet模型为例,探讨如何利用迁移学习技术,先在大规模相关数据上预训练模型,然后在目标数据集上进行微调(fine-tuning)的完整流程。
问题背景
在实际应用中,研究人员常常面临观测数据稀缺的问题。以气象领域为例,虽然长期的大气再分析数据非常丰富,但实际的观测数据可能非常有限。这种情况下,直接在小数据集上训练模型容易导致过拟合,而迁移学习提供了有效的解决方案。
TabNet模型迁移学习实现方法
1. 预训练阶段
首先,我们需要在源领域数据(如大气再分析数据)上完整训练TabNet模型:
# 初始化TabNet回归器
tabReg = TabNetRegressor(
n_d=n_d,
n_a=n_a,
n_steps=n_steps,
n_independent=n_independent,
n_shared=n_shared,
gamma=gamma,
verbose=1,
seed=randSeed
)
# 在源数据上训练
tabReg.fit(
X_train=X_train_source,
y_train=Y_train_source,
eval_set=[(X_train_source, Y_train_source), (X_valid_source, Y_valid_source)],
eval_name=['train', 'valid'],
max_epochs=250,
batch_size=256,
eval_metric=['rmse'],
patience=10,
loss_fn=torch.nn.MSELoss()
)
# 保存预训练模型
tabReg.save_model('pretrained_tabnet_model.zip')
2. 微调阶段
关键点在于加载预训练模型后,必须设置warm_start=True参数才能实现真正的迁移学习:
# 加载预训练模型
tabReg = TabNetRegressor()
tabReg.load_model('pretrained_tabnet_model.zip')
# 设置较小的学习率以适应新数据
tabReg.optimizer_params['lr'] = 0.005
# 在目标数据上微调(关键参数warm_start=True)
tabReg.fit(
X_train=X_train_target,
y_train=Y_train_target,
eval_set=[(X_train_target, Y_train_target), (X_valid_target, Y_valid_target)],
eval_name=['train', 'valid'],
max_epochs=250,
batch_size=256,
eval_metric=['rmse'],
patience=10,
loss_fn=torch.nn.MSELoss(),
warm_start=True # 这是实现迁移学习的关键
)
技术细节解析
-
warm_start参数的作用:
- 当设置为True时,模型会保留现有的权重作为初始值继续训练
- 如果设置为False(默认值),即使加载了预训练模型,也会重新初始化权重
-
学习率调整:
- 微调阶段通常使用较小的学习率
- 这是因为预训练模型已经学习到了有用的特征表示,我们只需要对这些特征进行小幅调整
-
训练过程监控:
- 建议同时监控训练集和验证集的RMSE指标
- 设置适当的patience值可以防止过拟合
实际应用建议
-
数据标准化:
- 确保源数据和目标数据使用相同的标准化方法
- 可以在预训练阶段计算统计量,并在微调阶段复用
-
特征一致性:
- 预训练和微调阶段使用的特征应该保持一致
- 如果特征维度不同,需要调整模型结构
-
早停策略:
- 微调阶段可能需要更严格的早停策略
- 可以减小patience值或设置更小的最小改进阈值
常见问题排查
如果发现微调没有效果(如损失值没有下降),请检查:
- 是否确实设置了
warm_start=True - 学习率是否设置合理(通常需要比预训练阶段更小)
- 预训练数据和目标数据是否具有相关性
- 模型结构是否一致(特别是特征维度)
通过本文介绍的方法,研究人员可以充分利用相关领域的大数据来提升在小数据集上的模型性能,这在许多实际应用场景中都具有重要价值。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669