FlagEmbedding项目训练过程中的信号中断问题分析与解决方案
2025-05-25 04:44:00作者:申梦珏Efrain
问题现象
在使用FlagEmbedding项目进行模型微调训练时,用户遇到了一个随机出现的错误:torch.distributed.elastic.multiprocessing.api.SignalException: Process 792735 got signal: 1。这个错误会导致训练过程中断,影响模型训练的正常进行。
错误背景
该错误通常出现在使用nohup命令配合torchrun启动分布式训练时。从错误日志中可以看到,系统收到了SIGHUP信号(信号编号1),这是导致进程终止的直接原因。SIGHUP信号通常与终端会话的断开有关,当用户退出终端或网络连接中断时,系统会向相关进程发送该信号。
技术分析
-
信号机制:在Linux系统中,信号是进程间通信的一种方式。
SIGHUP信号原本设计用于通知进程其控制终端已断开连接。现代系统中,它常被用于指示守护进程重新读取配置文件。 -
nohup的局限性:虽然
nohup命令设计用于忽略SIGHUP信号,但在某些情况下(特别是与复杂的分布式训练框架结合使用时),信号处理可能不完全可靠。 -
分布式训练的特殊性:
torch.distributed.elastic是PyTorch提供的弹性分布式训练框架,它对进程管理和信号处理有特殊要求,可能与nohup的信号处理机制产生冲突。
解决方案
-
使用tmux替代nohup:
- tmux是一个终端复用器,可以创建持久会话
- 使用方法:
tmux new -s session_name # 在tmux会话中运行训练命令 torchrun --nproc_per_node 1 -m FlagEmbedding.baai_general_embedding.finetune.run ... # 按Ctrl+B然后按D分离会话 - 优点:完全避免了信号中断问题,会话持久稳定
-
调整训练参数:
- 将temperature参数从0.3调整为≤0.05
- 这个参数控制对比损失的"温度",值过大会导致模型难以学习有区分度的表示
-
直接使用torchrun:
- 如果环境允许,可以直接在前台运行训练命令
- 避免使用任何会话管理工具,减少信号干扰的可能性
训练监控建议
-
loss曲线分析:
- 初始loss值较低可能是正常现象,特别是当query和positive样本相似度较高时
- 应关注loss的下降趋势而非绝对值大小
- 如果loss下降过快或波动异常,可能需要检查数据质量或调整学习率
-
资源监控:
- 虽然用户确认资源充足,但仍建议定期检查GPU显存、CPU和内存使用情况
- 可以使用
nvidia-smi和htop等工具进行监控
总结
FlagEmbedding项目在分布式训练环境下对信号处理较为敏感,特别是在使用nohup等传统后台运行方式时容易出现中断问题。推荐使用tmux等现代终端管理工具来维持训练会话的稳定性,同时合理设置训练参数以获得最佳效果。对于loss曲线的异常表现,应结合具体数据特性进行分析,必要时调整模型超参数。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
667
153
Ascend Extension for PyTorch
Python
216
235
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
303
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
255
321
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
63
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
651
仓颉编程语言运行时与标准库。
Cangjie
141
876
仓颉编译器源码及 cjdb 调试工具。
C++
133
866