Hi-FT/ERD项目实用工具指南:从模型分析到部署全流程
2025-06-19 02:16:38作者:史锋燃Gardner
工具概览
Hi-FT/ERD项目提供了一系列强大的工具集,覆盖了深度学习模型开发全周期的各个环节。本文将详细介绍这些工具的使用方法和应用场景,帮助开发者更高效地完成模型训练、分析、优化和部署工作。
训练日志分析
曲线绘制工具
analyze_logs.py
脚本是模型训练过程中不可或缺的分析工具,它能将训练日志中的关键指标可视化,帮助开发者直观理解模型的学习过程。
核心功能
- 支持绘制loss曲线、mAP曲线等多种训练指标
- 支持多实验结果的对比分析
- 可计算平均训练速度及稳定性指标
典型使用场景
- 基础训练监控
python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss --legend total_loss
- 多任务损失分析
python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls loss_bbox --out multi_loss.pdf
- 模型性能对比
python tools/analysis_tools/analyze_logs.py plot_curve exp1.json exp2.json --keys bbox_mAP --legend baseline improved
- 训练效率评估
python tools/analysis_tools/analyze_logs.py cal_train_time log.json
结果可视化与分析
预测结果分析工具
analyze_results.py
提供了对模型预测结果的深入分析能力,特别适合用于错误分析和模型优化。
核心参数解析
config
: 模型配置文件路径prediction_path
: 测试生成的pkl结果文件show_dir
: 结果保存目录--topk
: 控制保存最佳/最差预测样本数量--show-score-thr
: 过滤低置信度预测结果
应用示例
基础可视化
python tools/analysis_tools/analyze_results.py \
configs/faster_rcnn.py \
results.pkl \
output_vis \
--show
针对性分析
python tools/analysis_tools/analyze_results.py \
configs/faster_rcnn.py \
results.pkl \
output_vis \
--topk 50 \
--show-score-thr 0.3
模型服务化部署
TorchServe部署流程
将训练好的检测模型部署为可调用的服务,包含以下关键步骤:
- 环境准备
pip install torchserve torch-model-archiver
- 模型转换
python tools/deployment/mmdet2torchserve.py \
configs/faster_rcnn.py \
checkpoint.pth \
--output-folder model_store \
--model-name faster_rcnn
- 服务启动
torchserve --start \
--model-store model_store \
--models faster_rcnn.mar
- 服务调用
curl http://127.0.0.1:8080/predictions/faster_rcnn -T test_image.jpg
- 结果验证
python tools/deployment/test_torchserver.py \
test_image.jpg \
configs/faster_rcnn.py \
checkpoint.pth \
faster_rcnn
模型优化工具
Anchor优化
YOLO系列模型可以通过优化anchor设置来提升检测性能:
K-means聚类法
python tools/analysis_tools/optimize_anchors.py \
configs/yolov3.py \
--algorithm k-means \
--input-shape 608 608
差分进化算法
python tools/analysis_tools/optimize_anchors.py \
configs/yolov3.py \
--algorithm differential_evolution \
--input-shape 608 608
模型复杂度分析
计算模型的FLOPs和参数量:
python tools/analysis_tools/get_flops.py \
configs/faster_rcnn.py \
--shape 1280 800
输出示例:
Input shape: (3, 1280, 800)
Flops: 239.32 GFLOPs
Params: 37.74 M
高级分析工具
混淆矩阵分析
生成模型预测结果的混淆矩阵:
python tools/analysis_tools/confusion_matrix.py \
configs/faster_rcnn.py \
results.pkl \
output_dir \
--show
遮挡目标检测评估
专门针对遮挡和分离目标的评估指标:
离线评估
python tools/analysis_tools/coco_occluded_separated_recall.py \
results.pkl \
--out recall.json
在线评估配置
val_evaluator = dict(
type='CocoOccludedSeparatedMetric',
ann_file='annotations/instances_val2017.json',
metric=['bbox', 'segm'])
实用工具集
数据集工具
- 格式转换
python tools/data_converters/cityscapes.py \
/path/to/cityscapes \
-o /output/path
- 数据集下载
python tools/misc/download_dataset.py \
--dataset-name coco2017
模型转换工具
- 版本升级
python tools/model_converters/upgrade_model_version.py \
old_model.pth \
new_model.pth
- 模型发布准备
python tools/model_converters/publish_model.py \
latest.pth \
final_model.pth
结语
Hi-FT/ERD项目提供的这套工具集覆盖了深度学习模型开发的完整生命周期,从训练监控、结果分析到模型优化和服务部署,每一环节都有相应的工具支持。合理使用这些工具可以显著提升开发效率,帮助开发者更深入地理解模型行为,最终获得性能更优的检测模型。
登录后查看全文
热门内容推荐
1 freeCodeCamp博客页面工作坊中的断言方法优化建议2 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析3 freeCodeCamp论坛排行榜项目中的错误日志规范要求4 freeCodeCamp课程页面空白问题的技术分析与解决方案5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析7 freeCodeCamp全栈开发课程中React实验项目的分类修正8 freeCodeCamp英语课程填空题提示缺失问题分析9 freeCodeCamp Cafe Menu项目中link元素的void特性解析10 freeCodeCamp课程中屏幕放大器知识点优化分析
最新内容推荐
OpenSPG项目中的链指算子实现原理与应用场景分析 Bon项目中的Builder属性解析与正确使用方法 Revanced Patches v3.2.0版本深度解析:YouTube与YouTube Music增强功能更新 NuGet Gallery 依赖关系展示功能优化解析 Lazysql项目新增SQLite支持的技术实现分析 Akvorado项目在ClickHouse 24.3版本中的可视化兼容性问题分析 在lsp-bridge中配置自定义Python语言服务器 Drip-Table表格自动列宽异常问题分析与解决方案 slskd项目v0.23.0版本Webhook事件序列化问题解析 Flutter微信资源选择器iOS相册LivePhoto加载问题解析
项目优选
收起

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15

React Native鸿蒙化仓库
C++
116
200

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
503
398

openGauss kernel ~ openGauss is an open source relational database management system
C++
62
144

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
295
1.01 K

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
97
251

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
381
37

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
692
91

🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
97
74

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
357
341