Hi-FT/ERD项目实用工具指南:从模型分析到部署全流程
2025-06-19 01:53:56作者:史锋燃Gardner
工具概览
Hi-FT/ERD项目提供了一系列强大的工具集,覆盖了深度学习模型开发全周期的各个环节。本文将详细介绍这些工具的使用方法和应用场景,帮助开发者更高效地完成模型训练、分析、优化和部署工作。
训练日志分析
曲线绘制工具
analyze_logs.py
脚本是模型训练过程中不可或缺的分析工具,它能将训练日志中的关键指标可视化,帮助开发者直观理解模型的学习过程。
核心功能
- 支持绘制loss曲线、mAP曲线等多种训练指标
- 支持多实验结果的对比分析
- 可计算平均训练速度及稳定性指标
典型使用场景
- 基础训练监控
python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss --legend total_loss
- 多任务损失分析
python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls loss_bbox --out multi_loss.pdf
- 模型性能对比
python tools/analysis_tools/analyze_logs.py plot_curve exp1.json exp2.json --keys bbox_mAP --legend baseline improved
- 训练效率评估
python tools/analysis_tools/analyze_logs.py cal_train_time log.json
结果可视化与分析
预测结果分析工具
analyze_results.py
提供了对模型预测结果的深入分析能力,特别适合用于错误分析和模型优化。
核心参数解析
config
: 模型配置文件路径prediction_path
: 测试生成的pkl结果文件show_dir
: 结果保存目录--topk
: 控制保存最佳/最差预测样本数量--show-score-thr
: 过滤低置信度预测结果
应用示例
基础可视化
python tools/analysis_tools/analyze_results.py \
configs/faster_rcnn.py \
results.pkl \
output_vis \
--show
针对性分析
python tools/analysis_tools/analyze_results.py \
configs/faster_rcnn.py \
results.pkl \
output_vis \
--topk 50 \
--show-score-thr 0.3
模型服务化部署
TorchServe部署流程
将训练好的检测模型部署为可调用的服务,包含以下关键步骤:
- 环境准备
pip install torchserve torch-model-archiver
- 模型转换
python tools/deployment/mmdet2torchserve.py \
configs/faster_rcnn.py \
checkpoint.pth \
--output-folder model_store \
--model-name faster_rcnn
- 服务启动
torchserve --start \
--model-store model_store \
--models faster_rcnn.mar
- 服务调用
curl http://127.0.0.1:8080/predictions/faster_rcnn -T test_image.jpg
- 结果验证
python tools/deployment/test_torchserver.py \
test_image.jpg \
configs/faster_rcnn.py \
checkpoint.pth \
faster_rcnn
模型优化工具
Anchor优化
YOLO系列模型可以通过优化anchor设置来提升检测性能:
K-means聚类法
python tools/analysis_tools/optimize_anchors.py \
configs/yolov3.py \
--algorithm k-means \
--input-shape 608 608
差分进化算法
python tools/analysis_tools/optimize_anchors.py \
configs/yolov3.py \
--algorithm differential_evolution \
--input-shape 608 608
模型复杂度分析
计算模型的FLOPs和参数量:
python tools/analysis_tools/get_flops.py \
configs/faster_rcnn.py \
--shape 1280 800
输出示例:
Input shape: (3, 1280, 800)
Flops: 239.32 GFLOPs
Params: 37.74 M
高级分析工具
混淆矩阵分析
生成模型预测结果的混淆矩阵:
python tools/analysis_tools/confusion_matrix.py \
configs/faster_rcnn.py \
results.pkl \
output_dir \
--show
遮挡目标检测评估
专门针对遮挡和分离目标的评估指标:
离线评估
python tools/analysis_tools/coco_occluded_separated_recall.py \
results.pkl \
--out recall.json
在线评估配置
val_evaluator = dict(
type='CocoOccludedSeparatedMetric',
ann_file='annotations/instances_val2017.json',
metric=['bbox', 'segm'])
实用工具集
数据集工具
- 格式转换
python tools/data_converters/cityscapes.py \
/path/to/cityscapes \
-o /output/path
- 数据集下载
python tools/misc/download_dataset.py \
--dataset-name coco2017
模型转换工具
- 版本升级
python tools/model_converters/upgrade_model_version.py \
old_model.pth \
new_model.pth
- 模型发布准备
python tools/model_converters/publish_model.py \
latest.pth \
final_model.pth
结语
Hi-FT/ERD项目提供的这套工具集覆盖了深度学习模型开发的完整生命周期,从训练监控、结果分析到模型优化和服务部署,每一环节都有相应的工具支持。合理使用这些工具可以显著提升开发效率,帮助开发者更深入地理解模型行为,最终获得性能更优的检测模型。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8