Hi-FT/ERD项目实用工具指南:从模型分析到部署全流程
2025-06-19 08:32:06作者:史锋燃Gardner
工具概览
Hi-FT/ERD项目提供了一系列强大的工具集,覆盖了深度学习模型开发全周期的各个环节。本文将详细介绍这些工具的使用方法和应用场景,帮助开发者更高效地完成模型训练、分析、优化和部署工作。
训练日志分析
曲线绘制工具
analyze_logs.py
脚本是模型训练过程中不可或缺的分析工具,它能将训练日志中的关键指标可视化,帮助开发者直观理解模型的学习过程。
核心功能
- 支持绘制loss曲线、mAP曲线等多种训练指标
- 支持多实验结果的对比分析
- 可计算平均训练速度及稳定性指标
典型使用场景
- 基础训练监控
python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss --legend total_loss
- 多任务损失分析
python tools/analysis_tools/analyze_logs.py plot_curve log.json --keys loss_cls loss_bbox --out multi_loss.pdf
- 模型性能对比
python tools/analysis_tools/analyze_logs.py plot_curve exp1.json exp2.json --keys bbox_mAP --legend baseline improved
- 训练效率评估
python tools/analysis_tools/analyze_logs.py cal_train_time log.json
结果可视化与分析
预测结果分析工具
analyze_results.py
提供了对模型预测结果的深入分析能力,特别适合用于错误分析和模型优化。
核心参数解析
config
: 模型配置文件路径prediction_path
: 测试生成的pkl结果文件show_dir
: 结果保存目录--topk
: 控制保存最佳/最差预测样本数量--show-score-thr
: 过滤低置信度预测结果
应用示例
基础可视化
python tools/analysis_tools/analyze_results.py \
configs/faster_rcnn.py \
results.pkl \
output_vis \
--show
针对性分析
python tools/analysis_tools/analyze_results.py \
configs/faster_rcnn.py \
results.pkl \
output_vis \
--topk 50 \
--show-score-thr 0.3
模型服务化部署
TorchServe部署流程
将训练好的检测模型部署为可调用的服务,包含以下关键步骤:
- 环境准备
pip install torchserve torch-model-archiver
- 模型转换
python tools/deployment/mmdet2torchserve.py \
configs/faster_rcnn.py \
checkpoint.pth \
--output-folder model_store \
--model-name faster_rcnn
- 服务启动
torchserve --start \
--model-store model_store \
--models faster_rcnn.mar
- 服务调用
curl http://127.0.0.1:8080/predictions/faster_rcnn -T test_image.jpg
- 结果验证
python tools/deployment/test_torchserver.py \
test_image.jpg \
configs/faster_rcnn.py \
checkpoint.pth \
faster_rcnn
模型优化工具
Anchor优化
YOLO系列模型可以通过优化anchor设置来提升检测性能:
K-means聚类法
python tools/analysis_tools/optimize_anchors.py \
configs/yolov3.py \
--algorithm k-means \
--input-shape 608 608
差分进化算法
python tools/analysis_tools/optimize_anchors.py \
configs/yolov3.py \
--algorithm differential_evolution \
--input-shape 608 608
模型复杂度分析
计算模型的FLOPs和参数量:
python tools/analysis_tools/get_flops.py \
configs/faster_rcnn.py \
--shape 1280 800
输出示例:
Input shape: (3, 1280, 800)
Flops: 239.32 GFLOPs
Params: 37.74 M
高级分析工具
混淆矩阵分析
生成模型预测结果的混淆矩阵:
python tools/analysis_tools/confusion_matrix.py \
configs/faster_rcnn.py \
results.pkl \
output_dir \
--show
遮挡目标检测评估
专门针对遮挡和分离目标的评估指标:
离线评估
python tools/analysis_tools/coco_occluded_separated_recall.py \
results.pkl \
--out recall.json
在线评估配置
val_evaluator = dict(
type='CocoOccludedSeparatedMetric',
ann_file='annotations/instances_val2017.json',
metric=['bbox', 'segm'])
实用工具集
数据集工具
- 格式转换
python tools/data_converters/cityscapes.py \
/path/to/cityscapes \
-o /output/path
- 数据集下载
python tools/misc/download_dataset.py \
--dataset-name coco2017
模型转换工具
- 版本升级
python tools/model_converters/upgrade_model_version.py \
old_model.pth \
new_model.pth
- 模型发布准备
python tools/model_converters/publish_model.py \
latest.pth \
final_model.pth
结语
Hi-FT/ERD项目提供的这套工具集覆盖了深度学习模型开发的完整生命周期,从训练监控、结果分析到模型优化和服务部署,每一环节都有相应的工具支持。合理使用这些工具可以显著提升开发效率,帮助开发者更深入地理解模型行为,最终获得性能更优的检测模型。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp课程中英语学习模块的提示信息优化建议2 freeCodeCamp项目中移除未使用的CSS样式优化指南3 freeCodeCamp正则表达式教学视频中的语法修正4 freeCodeCamp课程中事件传单页面的CSS选择器问题解析5 freeCodeCamp项目中从ts-node迁移到tsx的技术决策分析6 freeCodeCamp正则表达式课程中反向引用示例代码修正分析7 freeCodeCamp课程中排版基础概念的优化探讨8 freeCodeCamp计算机基础课程中主板与CPU概念的精确表述 9 freeCodeCamp钢琴设计项目中的CSS盒模型设置优化10 freeCodeCamp猫照片应用HTML教程中的元素嵌套优化建议
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5