Hi-FT/ERD项目:自定义模型在标准数据集上的训练指南
2025-06-19 13:53:15作者:秋泉律Samson
前言
在计算机视觉领域,目标检测和实例分割是两项基础而重要的任务。Hi-FT/ERD项目提供了一个强大的框架,允许研究人员和开发者基于标准数据集训练自定义模型。本文将详细介绍如何在标准数据集上训练、测试和推理自定义模型,以Cityscapes数据集上训练自定义的Cascade Mask R-CNN R50模型为例。
准备工作
1. 数据集准备
首先需要准备标准数据集。以Cityscapes数据集为例,建议将数据集根目录链接到指定位置。数据集目录结构应如下:
data
├── cityscapes
│   ├── annotations
│   ├── leftImg8bit
│   │   ├── train
│   │   ├── val
│   ├── gtFine
│   │   ├── train
│   │   ├── val
Cityscapes数据集需要转换为COCO格式,使用提供的转换脚本:
pip install cityscapesscripts
python tools/dataset_converters/cityscapes.py ./data/cityscapes --nproc 8 --out-dir ./data/cityscapes/annotations
2. 预训练模型
当前配置使用COCO预训练权重进行初始化。建议提前下载预训练模型,以避免训练开始时因网络问题导致的错误。
自定义模型实现
1. 定义新模块
假设我们要用AugFPN替换默认的FPN作为neck部分。首先需要创建新的neck模块文件:
import torch.nn as nn
from mmdet.registry import MODELS
@MODELS.register_module()
class AugFPN(nn.Module):
    def __init__(self, in_channels, out_channels, num_outs,
                 start_level=0, end_level=-1, add_extra_convs=False):
        pass
    
    def forward(self, inputs):
        pass
2. 模块导入
有两种方式导入新模块:
- 在
__init__.py中添加导入语句 - 在配置文件中通过
custom_imports指定 
3. 修改配置文件
在配置文件中指定使用新的neck模块:
neck=dict(
    type='AugFPN',
    in_channels=[256, 512, 1024, 2048],
    out_channels=256,
    num_outs=5)
配置文件准备
完整的配置文件示例如下:
_base_ = [
    '../_base_/models/cascade-mask-rcnn_r50_fpn.py',
    '../_base_/datasets/cityscapes_instance.py', 
    '../_base_/default_runtime.py'
]
model = dict(
    backbone=dict(init_cfg=None),
    neck=dict(
        type='AugFPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        num_outs=5),
    roi_head=dict(
        bbox_head=[...],  # 修改类别数为8
        mask_head=dict(num_classes=8)))
train_pipeline = [
    ...  # 包含AutoAugment配置
]
train_dataloader = dict(batch_size=1, num_workers=3)
optim_wrapper = dict(...)
param_scheduler = [...]
train_cfg = dict(max_epochs=10, val_interval=1)
load_from = '预训练模型路径'
模型训练
准备好配置文件后,使用以下命令开始训练:
python tools/train.py configs/cityscapes/cascade-mask-rcnn_r50_augfpn_autoaug-10e_cityscapes.py
测试与推理
训练完成后,可以使用以下命令测试模型性能:
python tools/test.py configs/cityscapes/cascade-mask-rcnn_r50_augfpn_autoaug-10e_cityscapes.py work_dirs/cascade-mask-rcnn_r50_augfpn_autoaug-10e_cityscapes/epoch_10.pth
总结
本文详细介绍了在Hi-FT/ERD框架下,如何在标准数据集上训练自定义模型的完整流程。从数据集准备、自定义模块实现、配置文件修改到最终的训练和测试,每个步骤都提供了详细的说明。这种灵活的框架设计使得研究人员能够轻松尝试新的网络结构和训练策略,加速计算机视觉算法的研发进程。
对于更高级的自定义需求,如实现新的backbone、head或loss函数,以及自定义训练策略等,可以参考项目提供的其他高级指南。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
105
133
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
161
暂无简介
Dart
568
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
250
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446