PaddleDetection模型导出ONNX格式时的Shape问题解析
在使用PaddleDetection框架进行目标检测模型部署时,将训练好的模型导出为ONNX格式是一个常见需求。本文将以PP-YOLOE+模型为例,深入分析模型导出过程中遇到的Shape问题及其解决方案。
问题现象
用户在使用PaddleDetection导出PP-YOLOE+模型为ONNX格式时,发现输入Tensor的Shape显示为动态维度,特别是batch维度显示为"-1"(表示动态维度),而期望得到的是固定Shape如[1,3,640,640]。
原因分析
PaddleDetection默认导出的ONNX模型会保留动态batch维度,这是为了适应不同batch size的推理需求。这种设计虽然灵活,但在某些部署场景下需要固定Shape的模型输入。
解决方案
方法一:使用paddle2onnx优化工具
通过paddle2onnx的optimize子命令可以指定固定的输入Shape:
python -m paddle2onnx.optimize \
--input_model ppyoloe_plus_crn_s_80e_coco.onnx \
--output_model ppyoloe_plus_crn_s_80e_coco.onnx \
--input_shape_dict "{'image':[1,3,640,640],'scale_factor':[1,2],'tmp_17':[1,8400,4],'concat_14.tmp_0':[1,80,8400]}"
这种方法直接作用于已导出的ONNX模型,通过显式指定各输入Tensor的Shape来固定维度。
方法二:导出时指定batch size
在模型导出阶段,可以通过修改TestReader配置来指定batch size:
python tools/export_model.py \
-c configs/ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml \
-o weights=../ppyoloe_plus_crn_s_80e_coco.pdparams \
exclude_nms=True \
use_gpu=false \
TestReader.inputs_def.image_shape=[1,3,640,640]
注意这里将image_shape从[3,640,640]改为[1,3,640,640],明确包含了batch维度。
技术要点
-
动态Shape与静态Shape:ONNX模型支持动态维度(用-1表示),但在某些部署场景需要固定Shape。
-
多输入处理:PP-YOLOE+等检测模型通常有多个输入(如图像数据、scale_factor等),需要同时指定它们的Shape。
-
后处理优化:如果导出时排除了NMS(exclude_nms=True),在部署时需要额外处理检测框的后处理。
最佳实践建议
-
对于固定batch size的部署场景,建议在导出时就指定完整Shape。
-
如果需要支持多batch推理,可以保留动态batch,但需确保部署环境支持动态Shape。
-
使用onnxruntime或TensorRT等推理引擎时,注意检查其对动态Shape的支持情况。
-
对于生产环境,建议导出后使用onnx-simplifier等工具进一步优化模型。
通过以上方法,可以灵活控制PaddleDetection模型导出为ONNX格式时的输入Shape,满足不同部署场景的需求。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00