PaddleDetection模型导出ONNX格式时的Shape问题解析
在使用PaddleDetection框架进行目标检测模型部署时,将训练好的模型导出为ONNX格式是一个常见需求。本文将以PP-YOLOE+模型为例,深入分析模型导出过程中遇到的Shape问题及其解决方案。
问题现象
用户在使用PaddleDetection导出PP-YOLOE+模型为ONNX格式时,发现输入Tensor的Shape显示为动态维度,特别是batch维度显示为"-1"(表示动态维度),而期望得到的是固定Shape如[1,3,640,640]。
原因分析
PaddleDetection默认导出的ONNX模型会保留动态batch维度,这是为了适应不同batch size的推理需求。这种设计虽然灵活,但在某些部署场景下需要固定Shape的模型输入。
解决方案
方法一:使用paddle2onnx优化工具
通过paddle2onnx的optimize子命令可以指定固定的输入Shape:
python -m paddle2onnx.optimize \
--input_model ppyoloe_plus_crn_s_80e_coco.onnx \
--output_model ppyoloe_plus_crn_s_80e_coco.onnx \
--input_shape_dict "{'image':[1,3,640,640],'scale_factor':[1,2],'tmp_17':[1,8400,4],'concat_14.tmp_0':[1,80,8400]}"
这种方法直接作用于已导出的ONNX模型,通过显式指定各输入Tensor的Shape来固定维度。
方法二:导出时指定batch size
在模型导出阶段,可以通过修改TestReader配置来指定batch size:
python tools/export_model.py \
-c configs/ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml \
-o weights=../ppyoloe_plus_crn_s_80e_coco.pdparams \
exclude_nms=True \
use_gpu=false \
TestReader.inputs_def.image_shape=[1,3,640,640]
注意这里将image_shape从[3,640,640]改为[1,3,640,640],明确包含了batch维度。
技术要点
-
动态Shape与静态Shape:ONNX模型支持动态维度(用-1表示),但在某些部署场景需要固定Shape。
-
多输入处理:PP-YOLOE+等检测模型通常有多个输入(如图像数据、scale_factor等),需要同时指定它们的Shape。
-
后处理优化:如果导出时排除了NMS(exclude_nms=True),在部署时需要额外处理检测框的后处理。
最佳实践建议
-
对于固定batch size的部署场景,建议在导出时就指定完整Shape。
-
如果需要支持多batch推理,可以保留动态batch,但需确保部署环境支持动态Shape。
-
使用onnxruntime或TensorRT等推理引擎时,注意检查其对动态Shape的支持情况。
-
对于生产环境,建议导出后使用onnx-simplifier等工具进一步优化模型。
通过以上方法,可以灵活控制PaddleDetection模型导出为ONNX格式时的输入Shape,满足不同部署场景的需求。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00