从零开始实现Softmax回归——d2l-ai/d2l-ko项目解析
2025-06-04 04:44:37作者:何将鹤
引言
在机器学习中,分类问题是最常见的任务之一。Softmax回归(也称为多项逻辑回归)是解决多类分类问题的基本模型。本文将基于d2l-ai/d2l-ko项目中的实现,详细讲解如何从零开始构建Softmax回归模型。
数据准备
我们使用Fashion-MNIST数据集,它包含10个类别的服装图片,每个图片大小为28×28像素。首先设置批量大小为256的数据迭代器:
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
模型参数初始化
对于Softmax回归,我们需要为每个类别准备一组参数。由于输入是28×28=784像素的图片,输出是10个类别:
- 权重矩阵W:形状为784×10
- 偏置向量b:形状为1×10
我们使用正态分布初始化权重,偏置初始化为0:
num_inputs = 784
num_outputs = 10
W = np.random.normal(0, 0.01, (num_inputs, num_outputs))
b = np.zeros(num_outputs)
Softmax运算实现
Softmax函数将原始分数转换为概率分布,实现分为三步:
- 对每个元素取指数
- 计算每行的和(归一化常数)
- 将每行除以其归一化常数
数学表达式为:
实现代码如下:
def softmax(X):
X_exp = np.exp(X)
partition = X_exp.sum(1, keepdims=True)
return X_exp / partition # 这里应用了广播机制
模型定义
模型将输入图片展平为向量,然后进行线性变换和Softmax运算:
def net(X):
return softmax(np.dot(X.reshape(-1, W.shape[0]), W) + b)
损失函数:交叉熵
交叉熵损失是分类问题中最常用的损失函数。对于预测概率y_hat和真实标签y:
def cross_entropy(y_hat, y):
return -np.log(y_hat[range(len(y_hat)), y])
评估指标:准确率
准确率是最直观的分类性能指标:
def accuracy(y_hat, y):
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.astype(y.dtype) == y
return float(cmp.astype(y.dtype).sum())
训练过程
训练循环包括:
- 前向传播计算预测
- 计算损失
- 反向传播计算梯度
- 更新参数
我们使用小批量随机梯度下降进行优化:
lr = 0.1
def updater(batch_size):
return d2l.sgd([W, b], lr, batch_size)
num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)
预测与评估
训练完成后,我们可以用模型进行预测:
def predict_ch3(net, test_iter, n=6):
for X, y in test_iter:
break
trues = d2l.get_fashion_mnist_labels(y)
preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
titles = [f"{true}\n{pred}" for true, pred in zip(trues, preds)]
d2l.show_images(X[0:n].reshape(n, 28, 28), 1, n, titles=titles[0:n])
predict_ch3(net, test_iter)
数值稳定性问题
在实际实现中,直接计算Softmax可能会遇到数值不稳定的问题:
- 当输入值很大时,exp(x)可能导致数值溢出
- 当输入值很小时,exp(x)可能导致数值下溢
解决方案通常是在计算Softmax前减去最大值:
def softmax(X):
X_exp = np.exp(X - X.max(1, keepdims=True))
return X_exp / X_exp.sum(1, keepdims=True)
总结
本文详细介绍了从零实现Softmax回归的关键步骤:
- 数据准备和预处理
- 模型参数初始化
- Softmax运算实现
- 交叉熵损失函数
- 训练循环和优化
- 预测和评估
Softmax回归虽然简单,但包含了深度学习模型的基本要素,是理解更复杂神经网络的基础。
登录后查看全文
热门项目推荐
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript039RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统Vue0424arkanalyzer
方舟分析器:面向ArkTS语言的静态程序分析框架TypeScript041GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。03PowerWechat
PowerWechat是一款基于WeChat SDK for Golang,支持小程序、微信支付、企业微信、公众号等全微信生态Go01openGauss-server
openGauss kernel ~ openGauss is an open source relational database management systemC++0146
热门内容推荐
1 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析2 freeCodeCamp课程页面空白问题的技术分析与解决方案3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp英语课程填空题提示缺失问题分析7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp课程中屏幕放大器知识点优化分析9 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
Visual-RFT项目中模型路径差异的技术解析 Microcks在OpenShift上部署Keycloak PostgreSQL的权限问题解析 Beyla项目中的HTTP2连接检测问题解析 RaspberryMatic项目中HmIP-BWTH温控器假期模式设置问题分析 Lets-Plot 库中条形图标签在坐标轴反转时的定位问题解析 BedrockConnect项目版本兼容性问题解析与解决方案 LiquidJS 10.21.0版本新增数组过滤功能解析 Mink项目中Selenium驱动切换iframe的兼容性问题分析 Lichess移动端盲棋模式字符串优化解析 sbctl验证功能JSON输出问题解析
项目优选
收起

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15

React Native鸿蒙化仓库
C++
130
212

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
605
424

openGauss kernel ~ openGauss is an open source relational database management system
C++
91
146

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
487
39

轻量级、语义化、对开发者友好的 golang 时间处理库
Go
8
2

凹语言 | 因为简单,所以自由
Go
15
4

开源、云原生的多云管理及混合云融合平台
Go
71
5

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
300
1.03 K

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
106
255