从零开始实现Softmax回归——d2l-ai/d2l-ko项目解析
2025-06-04 01:13:52作者:何将鹤
引言
在机器学习中,分类问题是最常见的任务之一。Softmax回归(也称为多项逻辑回归)是解决多类分类问题的基本模型。本文将基于d2l-ai/d2l-ko项目中的实现,详细讲解如何从零开始构建Softmax回归模型。
数据准备
我们使用Fashion-MNIST数据集,它包含10个类别的服装图片,每个图片大小为28×28像素。首先设置批量大小为256的数据迭代器:
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
模型参数初始化
对于Softmax回归,我们需要为每个类别准备一组参数。由于输入是28×28=784像素的图片,输出是10个类别:
- 权重矩阵W:形状为784×10
- 偏置向量b:形状为1×10
我们使用正态分布初始化权重,偏置初始化为0:
num_inputs = 784
num_outputs = 10
W = np.random.normal(0, 0.01, (num_inputs, num_outputs))
b = np.zeros(num_outputs)
Softmax运算实现
Softmax函数将原始分数转换为概率分布,实现分为三步:
- 对每个元素取指数
- 计算每行的和(归一化常数)
- 将每行除以其归一化常数
数学表达式为:
实现代码如下:
def softmax(X):
X_exp = np.exp(X)
partition = X_exp.sum(1, keepdims=True)
return X_exp / partition # 这里应用了广播机制
模型定义
模型将输入图片展平为向量,然后进行线性变换和Softmax运算:
def net(X):
return softmax(np.dot(X.reshape(-1, W.shape[0]), W) + b)
损失函数:交叉熵
交叉熵损失是分类问题中最常用的损失函数。对于预测概率y_hat和真实标签y:
def cross_entropy(y_hat, y):
return -np.log(y_hat[range(len(y_hat)), y])
评估指标:准确率
准确率是最直观的分类性能指标:
def accuracy(y_hat, y):
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.astype(y.dtype) == y
return float(cmp.astype(y.dtype).sum())
训练过程
训练循环包括:
- 前向传播计算预测
- 计算损失
- 反向传播计算梯度
- 更新参数
我们使用小批量随机梯度下降进行优化:
lr = 0.1
def updater(batch_size):
return d2l.sgd([W, b], lr, batch_size)
num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)
预测与评估
训练完成后,我们可以用模型进行预测:
def predict_ch3(net, test_iter, n=6):
for X, y in test_iter:
break
trues = d2l.get_fashion_mnist_labels(y)
preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
titles = [f"{true}\n{pred}" for true, pred in zip(trues, preds)]
d2l.show_images(X[0:n].reshape(n, 28, 28), 1, n, titles=titles[0:n])
predict_ch3(net, test_iter)
数值稳定性问题
在实际实现中,直接计算Softmax可能会遇到数值不稳定的问题:
- 当输入值很大时,exp(x)可能导致数值溢出
- 当输入值很小时,exp(x)可能导致数值下溢
解决方案通常是在计算Softmax前减去最大值:
def softmax(X):
X_exp = np.exp(X - X.max(1, keepdims=True))
return X_exp / X_exp.sum(1, keepdims=True)
总结
本文详细介绍了从零实现Softmax回归的关键步骤:
- 数据准备和预处理
- 模型参数初始化
- Softmax运算实现
- 交叉熵损失函数
- 训练循环和优化
- 预测和评估
Softmax回归虽然简单,但包含了深度学习模型的基本要素,是理解更复杂神经网络的基础。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134