从零开始实现Softmax回归——d2l-ai/d2l-ko项目解析
2025-06-04 08:46:50作者:何将鹤
引言
在机器学习中,分类问题是最常见的任务之一。Softmax回归(也称为多项逻辑回归)是解决多类分类问题的基本模型。本文将基于d2l-ai/d2l-ko项目中的实现,详细讲解如何从零开始构建Softmax回归模型。
数据准备
我们使用Fashion-MNIST数据集,它包含10个类别的服装图片,每个图片大小为28×28像素。首先设置批量大小为256的数据迭代器:
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
模型参数初始化
对于Softmax回归,我们需要为每个类别准备一组参数。由于输入是28×28=784像素的图片,输出是10个类别:
- 权重矩阵W:形状为784×10
- 偏置向量b:形状为1×10
我们使用正态分布初始化权重,偏置初始化为0:
num_inputs = 784
num_outputs = 10
W = np.random.normal(0, 0.01, (num_inputs, num_outputs))
b = np.zeros(num_outputs)
Softmax运算实现
Softmax函数将原始分数转换为概率分布,实现分为三步:
- 对每个元素取指数
- 计算每行的和(归一化常数)
- 将每行除以其归一化常数
数学表达式为:
实现代码如下:
def softmax(X):
X_exp = np.exp(X)
partition = X_exp.sum(1, keepdims=True)
return X_exp / partition # 这里应用了广播机制
模型定义
模型将输入图片展平为向量,然后进行线性变换和Softmax运算:
def net(X):
return softmax(np.dot(X.reshape(-1, W.shape[0]), W) + b)
损失函数:交叉熵
交叉熵损失是分类问题中最常用的损失函数。对于预测概率y_hat和真实标签y:
def cross_entropy(y_hat, y):
return -np.log(y_hat[range(len(y_hat)), y])
评估指标:准确率
准确率是最直观的分类性能指标:
def accuracy(y_hat, y):
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.astype(y.dtype) == y
return float(cmp.astype(y.dtype).sum())
训练过程
训练循环包括:
- 前向传播计算预测
- 计算损失
- 反向传播计算梯度
- 更新参数
我们使用小批量随机梯度下降进行优化:
lr = 0.1
def updater(batch_size):
return d2l.sgd([W, b], lr, batch_size)
num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)
预测与评估
训练完成后,我们可以用模型进行预测:
def predict_ch3(net, test_iter, n=6):
for X, y in test_iter:
break
trues = d2l.get_fashion_mnist_labels(y)
preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
titles = [f"{true}\n{pred}" for true, pred in zip(trues, preds)]
d2l.show_images(X[0:n].reshape(n, 28, 28), 1, n, titles=titles[0:n])
predict_ch3(net, test_iter)
数值稳定性问题
在实际实现中,直接计算Softmax可能会遇到数值不稳定的问题:
- 当输入值很大时,exp(x)可能导致数值溢出
- 当输入值很小时,exp(x)可能导致数值下溢
解决方案通常是在计算Softmax前减去最大值:
def softmax(X):
X_exp = np.exp(X - X.max(1, keepdims=True))
return X_exp / X_exp.sum(1, keepdims=True)
总结
本文详细介绍了从零实现Softmax回归的关键步骤:
- 数据准备和预处理
- 模型参数初始化
- Softmax运算实现
- 交叉熵损失函数
- 训练循环和优化
- 预测和评估
Softmax回归虽然简单,但包含了深度学习模型的基本要素,是理解更复杂神经网络的基础。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0113
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
432
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
351
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
689
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
79
37
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
671