NVIDIA NCCL 库中FIFO队列泄漏问题分析与解决
2025-06-19 06:09:54作者:蔡怀权
问题背景
在NVIDIA的NCCL(NVIDIA Collective Communications Library)库使用过程中,开发人员发现了一个可能导致多进程同步锁死的严重问题。当8个进程(每个进程控制一个GPU)同时运行时,它们会在执行一定数量的图操作后同时陷入停滞状态。
问题现象
该问题表现出以下特征:
- 确定性重现:在特定操作序列后,所有8个进程会同时停止响应
- 与FIFO深度相关:调整NCCL_WORK_FIFO_DEPTH参数会影响问题出现的时间点
- 跨硬件平台:在H100和A100 GPU上均能重现
- 堆栈特征:进程停滞时的调用堆栈显示在sched_yield和waitWorkFifoAvailable处阻塞
问题分析
通过深入调查,开发人员发现问题的根源在于NCCL的FIFO工作队列管理机制。当使用CUDA图(CUDA Graphs)执行集合通信操作时,NCCL内部的工作队列可能会出现资源泄漏,导致后续操作无法获取必要的队列资源而陷入等待。
最小重现案例
开发人员提供了两个最小重现案例,分别使用PyTorch和原生C++实现:
PyTorch版本
import torch
import random
def _test(rank):
torch.cuda.set_device(rank)
torch.distributed.init_process_group(...)
size = 100_000
t = torch.zeros(size, dtype=torch.bfloat16, device="cuda")
torch.distributed.all_reduce(t)
torch.distributed.all_reduce(t)
with torch.cuda.graphs.graph(torch.cuda.graphs.CUDAGraph()):
torch.distributed.all_reduce(t)
for i in range(100_000):
size = 49_000
t = torch.zeros(size, dtype=torch.bfloat16, device="cuda")
torch.distributed.all_reduce(t)
torch.cuda.synchronize()
C++版本
#include <nccl.h>
#include <mpi.h>
void test(int rank) {
// 初始化NCCL和CUDA
ncclComm_t comm;
ncclCommInitRank(&comm, 2, id, rank);
// 执行两次普通allreduce
ncclAllReduce(d_data, d_data, size, ncclBfloat16, ncclSum, comm, 0);
ncclAllReduce(d_data, d_data, size, ncclBfloat16, ncclSum, comm, 0);
// 创建并执行图捕获的allreduce
cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal);
ncclAllReduce(d_data, d_data, size, ncclBfloat16, ncclSum, comm, stream);
cudaStreamEndCapture(stream, &graph);
// 后续执行大量普通allreduce操作
for (int i = 0; i < 10000; ++i) {
ncclAllReduce(d_data, d_data, 49000, ncclBfloat16, ncclSum, comm, 0);
cudaStreamSynchronize(0);
}
}
解决方案
NVIDIA团队通过提交的修复补丁解决了这一问题。该补丁主要修正了NCCL内部FIFO工作队列的管理逻辑,确保在图操作和普通操作混合使用时,队列资源能够被正确释放和重用。
技术启示
- 混合操作风险:图操作和普通操作的混合使用需要特别注意资源管理
- 参数敏感性:NCCL_WORK_FIFO_DEPTH等参数可能影响问题表现
- 同步重要性:在某些情况下,显式同步可能无法解决深层次的资源管理问题
- 版本更新:及时更新到包含修复补丁的NCCL版本至关重要
结论
这一问题的发现和解决展示了NCCL库在复杂使用场景下可能遇到的挑战,也体现了开源社区协作解决问题的高效性。对于使用NCCL进行高性能分布式计算的开发者来说,理解这类底层机制有助于更好地规避潜在问题,构建更稳定的应用系统。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869