在cocotb项目中使用Python测试运行器生成GHDL波形文件
2025-07-06 23:31:08作者:彭桢灵Jeremy
在数字电路仿真验证中,波形文件对于调试和分析设计行为至关重要。本文将详细介绍如何在cocotb测试框架中,使用Python测试运行器为VHDL设计生成GHDL波形文件。
波形文件生成的基本原理
cocotb是一个基于Python的硬件验证框架,支持多种仿真器,包括GHDL。GHDL作为开源的VHDL仿真器,可以通过命令行参数--wave来指定波形文件的输出路径和名称。
传统Makefile方式
在cocotb的传统使用方式中,通常通过Makefile来配置仿真参数。以下是一个典型的Makefile配置示例:
SIM ?= ghdl
TOPLEVEL_LANG ?= vhdl
VHDL_SOURCES += $(PWD)/*.vhd
TOPLEVEL = my_design
MODULE = test_my_design
SIM_ARGS = --wave=waveform.ghw
SIM_ARGS += -gG_GENERIC=16
include $(shell cocotb-config --makefiles)/Makefile.sim
这种方式会在项目根目录下直接生成waveform.ghw波形文件。
Python测试运行器方式
cocotb 1.9.2版本引入了实验性的Python测试运行器功能,提供了更灵活的测试配置方式。以下是等效的Python测试运行器实现:
import os
from pathlib import Path
from cocotb.runner import get_runner
def test_my_design_runner():
sim = os.getenv("SIM", "ghdl")
proj_path = Path(__file__).resolve().parent
runner = get_runner(sim)
hdl_toplevel = "my_design"
runner.build(
sources=[proj_path / "my_design.vhd"],
hdl_toplevel=hdl_toplevel,
parameters={"G_GENERIC": 16},
waves=True,
)
runner.test(
test_module="test_my_design",
hdl_toplevel=hdl_toplevel,
hdl_toplevel_lang="vhdl",
plusargs=["--wave=waveform.ghw"],
waves=True,
)
if __name__ == "__main__":
test_my_design_runner()
关键差异与注意事项
-
波形文件位置:使用Python测试运行器时,波形文件默认生成在
sim_build子目录中,而非项目根目录。 -
参数传递:GHDL参数可以通过
plusargs列表传递,这与Makefile中的SIM_ARGS等效。 -
波形启用标志:
waves=True参数会确保波形生成功能被启用。 -
路径处理:Python测试运行器使用Path对象处理文件路径,更加灵活和可移植。
实际应用建议
对于新项目,建议尝试使用Python测试运行器,因为它提供了:
- 更灵活的配置方式
- 更好的可维护性
- 更直观的参数传递机制
- 与Python生态更好的集成
同时需要注意检查sim_build目录下的波形文件,这是与Makefile方式的主要区别之一。
总结
cocotb的Python测试运行器为VHDL设计验证提供了现代化的配置方式,能够完全替代传统的Makefile方法。通过合理配置plusargs参数,可以轻松生成GHDL波形文件用于后续分析。开发者在迁移到Python测试运行器时,只需注意波形文件的默认输出位置变化即可。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355