VLM-R1项目中OVD数据集格式解析与应用指南
2025-06-11 08:25:09作者:齐冠琰
什么是OVD数据集
OVD(Object Vision Detection)数据集是视觉语言模型(VLM)训练中用于目标检测任务的重要数据格式。在VLM-R1项目中,这种数据集被设计为结合自然语言描述和视觉检测结果的统一格式,能够有效支持多模态模型的训练。
数据集结构详解
一个标准的OVD数据集条目包含以下几个关键部分:
-
基础信息部分:
id:数据条目的唯一标识符image:图像文件路径
-
对话部分(conversations):
- 采用问答对的形式组织
from字段标识发言者("human"或"gpt")value字段包含实际内容
多目标检测的表示方法
当图像中存在多个检测目标时,OVD数据集采用JSON数组的形式组织检测结果。每个检测目标包含:
bbox_2d:边界框坐标,格式为[x1, y1, x2, y2]label:目标类别名称,使用自然语言描述
示例结构如下:
[
{"bbox_2d": [3, 218, 799, 533], "label": "railings being crossed by horses"},
{"bbox_2d": [247, 118, 540, 533], "label": "a horse running or jumping"},
{"bbox_2d": [377, 59, 416, 109], "label": "equestrian rider's helmet"}
]
数据集构建最佳实践
-
标注规范:
- 边界框坐标应准确包含目标完整区域
- 标签描述应简洁明确,避免歧义
-
特殊情况处理:
- 当图像中无目标时,应返回"None"
- 对于遮挡或部分可见目标,应标注可见部分并注明状态
-
质量控制:
- 确保边界框不超出图像范围
- 检查标签描述的语法正确性
技术实现要点
在实际应用中处理OVD数据集时,开发者需要注意:
- 数据预处理阶段需要将JSON格式的检测结果转换为模型可理解的张量形式
- 对于自然语言标签,建议建立词汇表或使用预训练的词嵌入
- 在多目标情况下,应考虑目标间的空间关系和语义关联
这种数据格式的设计充分考虑了视觉语言模型训练的需求,既保留了视觉检测的精确性,又融入了自然语言的灵活性,是多模态学习研究中的重要工具。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178