在Azure上使用OpenAI Agents Python SDK的实践指南
2025-05-25 10:13:53作者:丁柯新Fawn
OpenAI Agents Python SDK是一个强大的工具包,可以帮助开发者快速构建基于大语言模型的智能代理应用。本文将详细介绍如何在微软Azure云平台上部署和使用该SDK,解决实际应用中的关键问题。
Azure OpenAI集成原理
OpenAI Agents SDK默认设计用于原生OpenAI API,但通过灵活的客户端配置,可以无缝对接Azure OpenAI服务。核心在于理解SDK的架构设计:
- 客户端抽象层:SDK通过OpenAIChatCompletionsModel类封装了模型调用逻辑
- 依赖注入机制:允许开发者传入自定义的AsyncAzureOpenAI客户端实例
- 认证适配:支持API Key和Azure AD两种认证方式
具体实现方案
基础API Key认证方案
对于大多数应用场景,使用Azure OpenAI提供的API Key是最简单的集成方式:
from openai import AsyncAzureOpenAI
from agents import Agent, OpenAIChatCompletionsModel, Runner
client = AsyncAzureOpenAI(
api_key="your_azure_openai_key",
api_version="2023-09-01-preview",
azure_endpoint="https://your-resource.openai.azure.com"
)
agent = Agent(
name="Azure Agent",
instructions="你是一个专业助手",
model=OpenAIChatCompletionsModel(
model="gpt-4",
openai_client=client
)
)
企业级Azure AD认证方案
对于需要更高安全性的企业环境,可以使用Azure Active Directory进行身份验证:
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
token_provider = get_bearer_token_provider(
DefaultAzureCredential(),
"https://cognitiveservices.azure.com/.default"
)
client = AsyncAzureOpenAI(
azure_endpoint="https://your-resource.openai.azure.com",
api_version="2024-09-01-preview",
azure_ad_token_provider=token_provider
)
最佳实践建议
- 版本管理:始终指定明确的api_version参数,避免因Azure API更新导致兼容性问题
- 部署名称:在Azure中创建的部署名称可能与模型名称不同,需确保正确对应
- 异步处理:推荐使用async/await模式以获得最佳性能
- 错误处理:实现完善的异常捕获机制,特别是针对Azure服务的限流和配额限制
- 性能调优:根据业务需求调整max_tokens和temperature等参数
常见问题解决方案
认证失败:检查Azure门户中的密钥/权限设置,确保认知服务API权限已分配
模型不可用:验证部署名称是否正确,并在Azure门户中检查模型部署状态
API版本不匹配:参考Azure文档使用最新的稳定API版本
超时问题:适当调整timeout参数,考虑Azure区域网络延迟
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350