Trinity-RFT项目开发指南:工作流创建与配置管理
2025-06-02 01:37:17作者:韦蓉瑛
项目概述
Trinity-RFT是一个面向大语言模型(LLM)训练与优化的框架,其核心设计理念是通过工作流(Workflow)机制实现多样化的训练场景支持。本文将深入解析如何在Trinity-RFT中开发新的工作流,并扩展配置生成器的功能。
核心概念解析
在开始开发前,我们需要理解三个关键概念:
- 任务(Task):代表可转换为工作流的数据结构,包含任务描述、标准答案等信息
- 工作流(Workflow):定义Agent与环境交互流程的执行单元,负责生成训练所需的经验数据
- 经验(Experience):工作流执行的输出结果,包含token序列、奖励值等训练所需信息
创建工作流全流程
第一步:准备任务数据集
任务数据集通过YAML配置文件加载,典型配置如下:
buffer:
explorer_input:
taskset:
default_workflow: "math_workflow"
path: "/data/math_problems.jsonl"
format:
prompt_key: "question"
response_key: "answer"
rollout_args:
temperature: 1.0
数据集文件示例(math_problems.jsonl):
{"question": "1+1=", "answer": "2"}
{"question": "2+2=", "answer": "4"}
第二步:实现工作流类
工作流基类定义如下核心接口:
class Workflow(ABC):
def __init__(self, model, task, auxiliary_models):
self.model = model # 训练模型
self.task = task # 任务数据
self.auxiliary_models = auxiliary_models # 辅助模型
@abstractmethod
def run(self) -> List[Experience]:
"""核心执行方法"""
完整实现示例
from trinity.common.workflows.workflow import WORKFLOWS
@WORKFLOWS.register_module("math_workflow")
class MathWorkflow(Workflow):
def __init__(self, model, task, auxiliary_models):
super().__init__(model, task, auxiliary_models)
self.question = task.raw_task["question"]
self.answer = task.raw_task["answer"]
self.rollout_args = task.rollout_args
def calculate_reward(self, response):
return 1.0 if response == self.answer else 0.0
def run(self):
responses = self.model.chat(
[{"role": "user", "content": self.question}],
n=self.rollout_args.n,
temperature=self.rollout_args.temperature
)
return [Experience(
tokens=resp.tokens,
prompt_length=resp.prompt_length,
reward=self.calculate_reward(resp.response_text),
logprobs=resp.logprobs
) for resp in responses]
性能优化技巧
对于资源密集型工作流,可实现resettable和reset方法避免重复初始化:
def resettable(self):
return True
def reset(self, task):
self.question = task.raw_task["question"]
self.answer = task.raw_task["answer"]
第三步:使用工作流
更新配置文件指定工作流类型:
buffer:
explorer_input:
taskset:
default_workflow_type: "math_workflow"
高级配置:扩展Config Generator
配置参数开发规范
-
参数分类:根据功能将参数放入对应管理文件
- buffer_config_manager.py
- explorer_config_manager.py
- model_config_manager.py
- trainer_config_manager.py
-
开发模板:
@CONFIG_GENERATORS.register_config(
default_value=96,
visible=lambda: st.session_state["trainer_gpu_num"] > 0,
other_configs={"_per_gpu_batch": 16}
)
def set_train_batch_size(**kwargs):
key = kwargs["key"]
gpu_num = st.session_state["trainer_gpu_num"]
st.session_state[key] = st.session_state["_per_gpu_batch"] * gpu_num
def update_per_gpu():
st.session_state["_per_gpu_batch"] = max(
st.session_state[key] // gpu_num, 1)
st.number_input(
"Batch Size",
min_value=gpu_num,
step=gpu_num,
on_change=update_per_gpu,
**kwargs
)
- 参数验证:
@CONFIG_GENERATORS.register_check()
def check_batch_size(unfinished_fields, key):
if st.session_state[key] % st.session_state["trainer_gpu_num"] != 0:
unfinished_fields.add(key)
st.warning("Batch size必须能被GPU数量整除")
配置集成流程
- 在ConfigManager中添加参数引用
- 在YAML生成函数中设置参数映射
- 确保参数可见性逻辑正确
开发最佳实践
- 代码风格检查:
pip install -e .[dev]
pre-commit run --all-files
- 设计建议:
- 保持工作流单一职责原则
- 复杂任务可拆分为多个子工作流
- 充分利用现有基类功能
- 调试技巧:
- 使用小规模数据集验证工作流
- 逐步增加rollout复杂度
- 监控经验数据的完整性
总结
Trinity-RFT通过灵活的工作流机制支持多样化的LLM训练场景。开发者可以通过实现特定工作流来支持新的任务类型,同时通过配置生成器扩展使系统更易用。本文详细介绍了从基础工作流开发到高级配置管理的完整流程,为框架扩展提供了系统性的指导方案。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210