Trinity-RFT项目开发指南:工作流创建与配置管理
2025-06-02 09:05:16作者:韦蓉瑛
项目概述
Trinity-RFT是一个面向大语言模型(LLM)训练与优化的框架,其核心设计理念是通过工作流(Workflow)机制实现多样化的训练场景支持。本文将深入解析如何在Trinity-RFT中开发新的工作流,并扩展配置生成器的功能。
核心概念解析
在开始开发前,我们需要理解三个关键概念:
- 任务(Task):代表可转换为工作流的数据结构,包含任务描述、标准答案等信息
- 工作流(Workflow):定义Agent与环境交互流程的执行单元,负责生成训练所需的经验数据
- 经验(Experience):工作流执行的输出结果,包含token序列、奖励值等训练所需信息
创建工作流全流程
第一步:准备任务数据集
任务数据集通过YAML配置文件加载,典型配置如下:
buffer:
explorer_input:
taskset:
default_workflow: "math_workflow"
path: "/data/math_problems.jsonl"
format:
prompt_key: "question"
response_key: "answer"
rollout_args:
temperature: 1.0
数据集文件示例(math_problems.jsonl):
{"question": "1+1=", "answer": "2"}
{"question": "2+2=", "answer": "4"}
第二步:实现工作流类
工作流基类定义如下核心接口:
class Workflow(ABC):
def __init__(self, model, task, auxiliary_models):
self.model = model # 训练模型
self.task = task # 任务数据
self.auxiliary_models = auxiliary_models # 辅助模型
@abstractmethod
def run(self) -> List[Experience]:
"""核心执行方法"""
完整实现示例
from trinity.common.workflows.workflow import WORKFLOWS
@WORKFLOWS.register_module("math_workflow")
class MathWorkflow(Workflow):
def __init__(self, model, task, auxiliary_models):
super().__init__(model, task, auxiliary_models)
self.question = task.raw_task["question"]
self.answer = task.raw_task["answer"]
self.rollout_args = task.rollout_args
def calculate_reward(self, response):
return 1.0 if response == self.answer else 0.0
def run(self):
responses = self.model.chat(
[{"role": "user", "content": self.question}],
n=self.rollout_args.n,
temperature=self.rollout_args.temperature
)
return [Experience(
tokens=resp.tokens,
prompt_length=resp.prompt_length,
reward=self.calculate_reward(resp.response_text),
logprobs=resp.logprobs
) for resp in responses]
性能优化技巧
对于资源密集型工作流,可实现resettable和reset方法避免重复初始化:
def resettable(self):
return True
def reset(self, task):
self.question = task.raw_task["question"]
self.answer = task.raw_task["answer"]
第三步:使用工作流
更新配置文件指定工作流类型:
buffer:
explorer_input:
taskset:
default_workflow_type: "math_workflow"
高级配置:扩展Config Generator
配置参数开发规范
-
参数分类:根据功能将参数放入对应管理文件
- buffer_config_manager.py
- explorer_config_manager.py
- model_config_manager.py
- trainer_config_manager.py
-
开发模板:
@CONFIG_GENERATORS.register_config(
default_value=96,
visible=lambda: st.session_state["trainer_gpu_num"] > 0,
other_configs={"_per_gpu_batch": 16}
)
def set_train_batch_size(**kwargs):
key = kwargs["key"]
gpu_num = st.session_state["trainer_gpu_num"]
st.session_state[key] = st.session_state["_per_gpu_batch"] * gpu_num
def update_per_gpu():
st.session_state["_per_gpu_batch"] = max(
st.session_state[key] // gpu_num, 1)
st.number_input(
"Batch Size",
min_value=gpu_num,
step=gpu_num,
on_change=update_per_gpu,
**kwargs
)
- 参数验证:
@CONFIG_GENERATORS.register_check()
def check_batch_size(unfinished_fields, key):
if st.session_state[key] % st.session_state["trainer_gpu_num"] != 0:
unfinished_fields.add(key)
st.warning("Batch size必须能被GPU数量整除")
配置集成流程
- 在ConfigManager中添加参数引用
- 在YAML生成函数中设置参数映射
- 确保参数可见性逻辑正确
开发最佳实践
- 代码风格检查:
pip install -e .[dev]
pre-commit run --all-files
- 设计建议:
- 保持工作流单一职责原则
- 复杂任务可拆分为多个子工作流
- 充分利用现有基类功能
- 调试技巧:
- 使用小规模数据集验证工作流
- 逐步增加rollout复杂度
- 监控经验数据的完整性
总结
Trinity-RFT通过灵活的工作流机制支持多样化的LLM训练场景。开发者可以通过实现特定工作流来支持新的任务类型,同时通过配置生成器扩展使系统更易用。本文详细介绍了从基础工作流开发到高级配置管理的完整流程,为框架扩展提供了系统性的指导方案。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137