使用Python操作Neo4j图数据库:从基础到实践
2025-06-04 22:31:05作者:庞眉杨Will
图数据库与Neo4j简介
Neo4j是目前最流行的图数据库之一,它采用CQL(Cypher查询语言)作为查询语言。与关系型数据库(RDBMS)不同,图数据库以图结构存储数据,使用节点、关系和属性来表示数据。
图数据库的核心优势在于它能高效处理复杂的关系网络。在社交网络分析、推荐系统、知识图谱等领域,图数据库展现出比传统关系型数据库更优异的性能。
Neo4j的核心概念
基本构建块
-
节点(Node)
- 表示实体或复杂值类型
- 可以包含属性(键值对)
- 可以与其他节点建立零或多个关系
-
关系(Relationship)
- 表示节点间的关联
- 必须有方向(但查询时可忽略)
- 必须有关系类型
- 也可以包含属性
-
属性(Property)
- 节点和关系都可以有属性
- 属性是键值对,值可以是基本类型或集合
-
标签(Label)
- 节点可以有零或多个标签
- 标签表示角色、类别或类型
- 用于定义索引和约束
环境搭建
安装Neo4j
- 从官网下载Neo4j社区版
- 确保已安装Java 7或更高版本
- 解压后运行bin/neo4j start启动服务
- 访问http://localhost:7474/验证安装
Python连接Neo4j
使用py2neo库连接Neo4j:
pip install py2neo
实战:构建电影数据库
让我们构建一个包含电影、演员、导演等信息的图数据库。以《阿甘正传》为例:
创建节点和关系
from py2neo import Node, Relationship, Graph
# 连接数据库
graph = Graph()
# 创建节点
tom_hanks = Node("Person", name="Tom Hanks", born=1956, country="USA")
forrest_gump = Node("Movie", title="Forrest Gump", released=1994)
# 创建关系
acted_in = Relationship(tom_hanks, "ACTED_IN", forrest_gump, role="Forrest Gump")
# 写入数据库
graph.create(acted_in)
添加属性
# 添加票房属性
forrest_gump["box_office"] = 677.9 # 百万美元
forrest_gump.push() # 同步到数据库
查询数据库信息
# 获取节点数量
print("节点数量:", graph.order)
# 获取关系类型
print("关系类型:", graph.relationship_types)
# 获取节点标签
print("节点标签:", graph.node_labels)
Cypher查询语言入门
Cypher是Neo4j的查询语言,结合了SQL和图形遍历模式的特点。
基本语法
- 创建节点
CREATE (:Person {name: "Tom Hanks", born: 1956})
- 创建关系
MATCH (a:Person), (m:Movie)
WHERE a.name = "Tom Hanks" AND m.title = "Forrest Gump"
CREATE (a)-[r:ACTED_IN {role: "Forrest Gump"}]->(m)
- 查询数据
MATCH (p:Person)-[r:ACTED_IN]->(m:Movie)
WHERE m.title = "Forrest Gump"
RETURN p.name, r.role
扩展数据库
让我们添加《绿里奇迹》的相关信息:
# 创建新节点
green_mile = Node("Movie", title="The Green Mile", released=1999)
# 创建关系
graph.create(Relationship(tom_hanks, "ACTED_IN", green_mile, role="Paul Edgecomb"))
实用技巧
- 批量操作:对于大量数据,使用事务批量提交提高性能
- 索引优化:为常用查询字段创建索引
- 可视化:利用Neo4j浏览器直观查看图结构
总结
通过本文,我们学习了:
- Neo4j图数据库的基本概念
- 使用Python(py2neo)连接和操作Neo4j
- 创建节点、关系和属性
- 基本的Cypher查询语法
- 构建电影数据库的完整示例
图数据库在处理复杂关系数据时具有独特优势,结合Python的强大生态,能够为数据分析、推荐系统等应用提供高效解决方案。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355