【亲测免费】 BLIP 模型使用指南
2026-01-16 09:23:30作者:蔡丛锟
1. 项目介绍
BLIP(Bootstrapping Language-Image Pre-training) 是由Junnan Li等人在2022年ICML会议上提出的一种多模态预训练模型。BLIP旨在统一视觉语言理解和生成任务,如图像文本检索、图像标题生成以及视觉问答等。它基于PyTorch实现,并且依赖于包括ALBEF、HuggingFace Transformers和timm在内的资源库。
2. 项目快速启动
首先,确保你的环境中已安装了PyTorch 1.10及以上的版本。接下来,通过以下步骤安装BLIP所需的依赖:
pip install -r requirements.txt
要运行预训练模型的示例,你可以从Colab笔记本中启动交互式演示(无需GPU)。以下是加载预训练模型并执行基本任务的Python代码:
from transformers import BlipModel, BlipTokenizer
model = BlipModel.from_pretrained("salesforce/blip-vqa-base")
tokenizer = BlipTokenizer.from_pretrained("salesforce/blip-vqa-base")
# 假设我们有一个图像路径image_path和一个问题question
input_dict = tokenizer.encode_image_and_text(image_path=image_path, question=question, return_tensors="pt")
outputs = model(**input_dict)
answer = tokenizer.decode Answers(outputs["logits"], top_k=1)[0]
print(f"The answer is: {answer}")
请注意,你需要将image_path和question替换为实际的图像路径和问题字符串。
3. 应用案例和最佳实践
图像-文本检索
# 调整BlipForImageTextRetrieval模型进行检索任务
retrieval_model = BlipForImageTextRetrieval.from_pretrained("your_finetuned_model")
图像描述生成
# 使用BlipForConditionalGeneration模型生成图像标题
caption_model = BlipForConditionalGeneration.from_pretrained("salesforce/blip-gen-base")
视觉问答(VQA)
# 针对VQA任务使用BlipForQuestionAnswering
vqa_model = BlipForQuestionAnswering.from_pretrained("salesforce/blip-vqa-base")
在使用这些模型时,建议参考官方文档以获取关于如何输入数据、处理输出和微调模型的最佳实践。
4. 典型生态项目
- LAVIS: 这是BLIP的集成库,提供了一站式的解决方案,用于语言和视觉研究与应用。
- HuggingFace Transformers: 提供了一系列的Transformer模型,包括BLIP模型,以及工具和API用于模型训练和部署。
- timm: 包含许多计算机视觉领域的预训练模型,可以与BLIP配合使用来优化图像处理。
以上就是关于BLIP模型的基本介绍、快速启动和应用案例。在进一步探索时,推荐查看GitHub仓库中的完整文档和示例代码。祝你在使用BLIP上取得成功!
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249