ELFI 开源项目教程
2024-09-09 07:37:03作者:龚格成
1. 项目介绍
ELFI(Engine for Likelihood-Free Inference)是一个用于似然自由推断(Likelihood-Free Inference, LFI)的统计软件包,特别适用于近似贝叶斯计算(Approximate Bayesian Computation, ABC)。LFI 方法通过使用数据生成模拟器函数来替代似然函数,从而进行推断。ELFI 提供了易于使用的语法,并支持开箱即用的并行推断。
ELFI 的主要特点包括:
- 支持多种 LFI 方法,如 ABC 拒绝采样器、序列蒙特卡罗 ABC 采样器等。
- 提供可视化工具、模型比较、诊断和后处理功能。
- 支持并行化推断。
2. 项目快速启动
安装 ELFI
首先,确保你已经安装了 Python 环境。然后使用 pip 安装 ELFI:
pip install elfi
快速启动示例
以下是一个简单的 ELFI 使用示例,展示了如何使用 ABC 拒绝采样器进行推断。
import elfi
import numpy as np
# 定义一个简单的模拟器
def simple_simulator(mu, sigma, n_obs=10):
return np.random.normal(mu, sigma, n_obs)
# 创建 ELFI 模型
mu = elfi.Prior('uniform', -10, 20)
sigma = elfi.Prior('uniform', 0, 10)
Y = elfi.Simulator(simple_simulator, mu, sigma, observed=np.array([1, 2, 3, 4, 5]))
# 定义距离函数
d = elfi.Distance('euclidean', Y)
# 运行 ABC 拒绝采样器
rej = elfi.Rejection(d, batch_size=10000)
result = rej.sample(1000)
# 输出结果
print(result)
3. 应用案例和最佳实践
应用案例
ELFI 可以应用于多种领域,如生物统计学、生态学和金融学等。以下是一个简单的应用案例:
案例:估计正态分布的参数
假设我们有一组观测数据,我们希望估计其背后的正态分布的均值和标准差。使用 ELFI,我们可以通过 ABC 方法来估计这些参数。
最佳实践
- 选择合适的距离函数:距离函数的选择对推断结果有很大影响,应根据具体问题选择合适的距离函数。
- 并行化推断:ELFI 支持并行化推断,可以显著提高推断效率。
- 模型比较:ELFI 提供了模型比较工具,可以帮助用户选择最合适的模型。
4. 典型生态项目
ELFI 作为一个开源项目,与其他开源项目有着良好的兼容性。以下是一些与 ELFI 相关的典型生态项目:
- NumPy:用于数值计算的基础库,ELFI 依赖于 NumPy 进行数据处理。
- SciPy:提供了科学计算工具,ELFI 使用 SciPy 进行统计计算。
- Matplotlib:用于数据可视化,ELFI 提供了与 Matplotlib 集成的可视化工具。
通过这些生态项目的支持,ELFI 能够更好地服务于各种科学计算和数据分析任务。
热门项目推荐
相关项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
《SIFTGPU:在GPU上实现尺度不变特征变换的安装与使用教程》 探索开源漫画阅读器ComicFlow:安装与使用教程 《USB Cam:开启ROS 2相机之旅》 深入探索ns-3-dev:开源网络模拟器的安装与使用指南 《lest测试框架的安装与使用教程》 《A-KAZE特征点的提取与匹配:开源项目实战指南》 《DS3232RTC库的安装与使用教程》 探索frePPLe:制造业供应链计划的开源解决方案安装与使用教程 《ROS-Industrial 基础培训教程:industrial_training 的安装与使用》 深入了解MultiVNC:跨平台Multicast支持的VNC查看器安装与使用教程
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
266
55
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4