CloudStack虚拟路由器中DHCP记录未正确释放问题分析
问题背景
在CloudStack 4.19.1.2版本的VPC环境中,当使用冗余虚拟路由器配置时,发现一个关于DHCP服务的重要问题:当虚拟机被彻底删除(expunge)后,虚拟路由器中的DHCP内存记录未能正确释放。这会导致IP地址资源逐渐耗尽,最终新虚拟机无法获取IP地址。
问题现象
在VPC环境中配置了冗余虚拟路由器并创建虚拟机后,如果执行虚拟机彻底删除操作,检查虚拟路由器中的/var/lib/misc/dnsmasq.leases文件会发现,该虚拟机的DHCP记录仍然存在。这些未被释放的记录会持续占用IP地址资源,直到虚拟路由器重启才会被清除。
技术分析
现有机制分析
CloudStack在删除虚拟机时,会通过执行dhcp_release命令尝试释放虚拟路由器中dnsmasq服务维护的内存DHCP记录。命令格式如下:
dhcp_release eth3 172.29.101.250 02:02:00:d4:00:4f
问题根源
深入分析发现,dhcp_release命令实际上并未生效,原因在于dnsmasq服务的安全验证机制。dnsmasq源代码(rfc2131.c)中有如下关键检查逻辑:
if (!(context = narrow_context(context, mess->ciaddr, tagif_netid)) ||
!(opt = option_find(mess, sz, OPTION_SERVER_IDENTIFIER, INADDRSZ)) ||
option_addr(opt).s_addr != server_id(context, override, fallback).s_addr)
return 0;
这段代码要求客户端请求中的服务器ID必须与dnsmasq实际监听的地址匹配。在冗余虚拟路由器配置中:
- dnsmasq配置(
/etc/dnsmasq.d/cloud.conf)中只监听了回环地址(127.0.0.1)和次要IP地址(如172.29.101.1) - 但
dhcp_release命令发送的请求中,服务器ID使用的是主IP地址(如172.29.101.245) - 由于地址不匹配,dnsmasq拒绝了DHCP释放请求
网络配置验证
通过检查虚拟路由器的网络配置可以确认这一点:
5: eth3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc pfifo_fast state UP group default qlen 1000
link/ether 02:02:00:d4:00:32 brd ff:ff:ff:ff:ff:ff
inet 172.29.101.245/24 brd 172.29.101.255 scope global eth3
inet 172.29.101.1/24 brd 172.29.101.255 scope global secondary eth3
解决方案
临时解决方案
有两种临时解决方案:
- 手动修改dnsmasq配置文件,添加主IP地址到监听列表:
listen-address=127.0.0.1,172.29.101.1,172.29.101.245
- 修改虚拟路由器中的Python脚本
/opt/cloud/bin/cs/CsDhcp.py,在冗余模式下同时添加网关IP和主IP到监听地址列表:
if self.cl.is_redundant():
listen_address.append(gateway)
listen_address.append(ip) # 添加这一行
官方修复
该问题已被CloudStack开发团队确认并修复,修复方案已合并到主分支。修复思路与上述临时解决方案类似,确保在冗余虚拟路由器配置中,dnsmasq同时监听主IP和次IP地址,从而使DHCP释放请求能够被正确处理。
总结
这个问题展示了在冗余网络配置中,IP地址管理需要考虑的额外复杂性。CloudStack的修复确保了在VPC冗余虚拟路由器环境下,DHCP资源能够被正确释放,避免了IP地址泄漏问题。对于生产环境,建议升级到包含此修复的CloudStack版本,以获得更稳定的网络资源管理能力。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00