ASP.NET Extensions 项目中的 AI 服务生命周期管理优化
在 ASP.NET Extensions 项目中,开发团队正在讨论如何优化 AI 相关服务的依赖注入生命周期管理。当前实现中,IChatClient 的注册默认使用了 Singleton(单例)生命周期,这在某些特定场景下可能不够灵活。
当前实现的问题
目前,Microsoft.Extensions.AI 包中的服务注册扩展方法强制使用了单例生命周期。这种设计在大多数情况下是合理的,因为它符合 Aspire 框架的约定,并且对于大多数 AI 服务来说,单例模式是最优选择。
然而,在某些特殊场景下,这种硬编码的生命周期限制会带来问题。例如,在 GitHub Copilot 代理的实现中,客户端需要根据每个请求中使用的特定 GitHub 令牌进行范围限定(Scoped)。当前的单例实现无法满足这种需求。
解决方案讨论
开发团队提出了几种可能的改进方案:
-
多方法方案:按照 .NET 依赖注入的命名惯例,提供不同生命周期版本的注册方法,如 AddSingletonChatClient、AddScopedChatClient 和 AddTransientChatClient。这种方案虽然直观,但会引入 API 破坏性变更。
-
参数化方案:借鉴 Entity Framework Core 的做法,在现有方法中添加一个可选的 ServiceLifetime 参数。例如:
services.AddChatClient(configure, lifetime: ServiceLifetime.Scoped);
团队更倾向于第二种方案,因为它:
- 保持了 API 的简洁性
- 与现有 .NET 生态系统的设计模式一致
- 提供了更大的灵活性而不破坏现有代码
技术考量
在实现这种改进时,需要考虑几个技术细节:
-
默认值保持:为了向后兼容,默认生命周期应保持为 Singleton。
-
性能影响:对于 AI 服务这种可能涉及网络调用的组件,需要仔细评估不同生命周期对性能的影响。
-
线程安全:如果选择支持非单例生命周期,需要确保客户端实现是线程安全的。
-
资源管理:特别是对于 Scoped 和 Transient 生命周期,需要妥善处理资源的创建和释放。
最佳实践建议
基于这个讨论,可以总结出一些服务注册的最佳实践:
-
优先使用单例:对于无状态的、线程安全的服务,单例是最佳选择。
-
按需灵活:当服务需要请求特定上下文时,应支持更灵活的生命周期。
-
一致性设计:遵循框架已有的模式(如 EF Core 的参数化生命周期)可以提高 API 的易用性。
-
明确文档:对于支持多种生命周期的服务,应在文档中明确说明每种情况下的适用场景和注意事项。
这个改进将使 ASP.NET Extensions 项目中的 AI 服务注册更加灵活,同时保持与整个 .NET 生态系统的一致性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00