ASP.NET Extensions 项目中的 AI 服务生命周期管理优化
在 ASP.NET Extensions 项目中,开发团队正在讨论如何优化 AI 相关服务的依赖注入生命周期管理。当前实现中,IChatClient 的注册默认使用了 Singleton(单例)生命周期,这在某些特定场景下可能不够灵活。
当前实现的问题
目前,Microsoft.Extensions.AI 包中的服务注册扩展方法强制使用了单例生命周期。这种设计在大多数情况下是合理的,因为它符合 Aspire 框架的约定,并且对于大多数 AI 服务来说,单例模式是最优选择。
然而,在某些特殊场景下,这种硬编码的生命周期限制会带来问题。例如,在 GitHub Copilot 代理的实现中,客户端需要根据每个请求中使用的特定 GitHub 令牌进行范围限定(Scoped)。当前的单例实现无法满足这种需求。
解决方案讨论
开发团队提出了几种可能的改进方案:
-
多方法方案:按照 .NET 依赖注入的命名惯例,提供不同生命周期版本的注册方法,如 AddSingletonChatClient、AddScopedChatClient 和 AddTransientChatClient。这种方案虽然直观,但会引入 API 破坏性变更。
-
参数化方案:借鉴 Entity Framework Core 的做法,在现有方法中添加一个可选的 ServiceLifetime 参数。例如:
services.AddChatClient(configure, lifetime: ServiceLifetime.Scoped);
团队更倾向于第二种方案,因为它:
- 保持了 API 的简洁性
- 与现有 .NET 生态系统的设计模式一致
- 提供了更大的灵活性而不破坏现有代码
技术考量
在实现这种改进时,需要考虑几个技术细节:
-
默认值保持:为了向后兼容,默认生命周期应保持为 Singleton。
-
性能影响:对于 AI 服务这种可能涉及网络调用的组件,需要仔细评估不同生命周期对性能的影响。
-
线程安全:如果选择支持非单例生命周期,需要确保客户端实现是线程安全的。
-
资源管理:特别是对于 Scoped 和 Transient 生命周期,需要妥善处理资源的创建和释放。
最佳实践建议
基于这个讨论,可以总结出一些服务注册的最佳实践:
-
优先使用单例:对于无状态的、线程安全的服务,单例是最佳选择。
-
按需灵活:当服务需要请求特定上下文时,应支持更灵活的生命周期。
-
一致性设计:遵循框架已有的模式(如 EF Core 的参数化生命周期)可以提高 API 的易用性。
-
明确文档:对于支持多种生命周期的服务,应在文档中明确说明每种情况下的适用场景和注意事项。
这个改进将使 ASP.NET Extensions 项目中的 AI 服务注册更加灵活,同时保持与整个 .NET 生态系统的一致性。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0100AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









