Auptimizer 开源项目教程
2024-09-24 10:59:39作者:瞿蔚英Wynne
1、项目介绍
Auptimizer 是一个用于机器学习(ML)模型的优化工具,旨在自动化模型构建和部署过程中的许多繁琐部分。它通过使用最先进的超参数优化(HPO)和模型压缩技术,帮助用户在尽可能短的时间内获得最佳模型。Auptimizer 还支持将模型转换为行业标准的 ONNX 和 TensorFlow Lite 格式,以便在边缘设备上进行部署。此外,Auptimizer 提供了一个一致的接口,允许用户在不同的 HPO 和压缩算法、转换框架和计算资源之间轻松切换。
2、项目快速启动
安装 Auptimizer
Auptimizer 目前主要在 Linux 系统上进行了测试,Windows 用户可能需要进行一些调整。可以通过 pip 安装 Auptimizer:
pip install auptimizer
使用 Auptimizer 进行实验
以下是一个简单的示例,展示如何使用 Auptimizer 进行超参数优化实验:
# 进入示例目录
cd Examples/demo
# 设置环境(根据用户输入交互式创建环境文件)
python -m aup.setup
# 初始化实验
python -m aup.init
# 创建训练脚本 - auto.py
python -m aup.convert origin.py experiment.json demo_func
# 运行实验
python -m aup experiment.json
每个作业的超参数配置将分别保存在 jobs/*json 中,并记录在 SQLite 文件 aup/sqlite3.db 中。
3、应用案例和最佳实践
应用案例
Auptimizer 在多个领域都有广泛的应用,例如:
- 图像分类:通过超参数优化,Auptimizer 可以帮助用户找到最佳的模型配置,从而提高图像分类的准确率。
- 自然语言处理:在 NLP 任务中,Auptimizer 可以帮助用户优化模型的超参数,从而提高文本分类或情感分析的性能。
- 边缘设备部署:Auptimizer 支持将模型转换为 ONNX 和 TensorFlow Lite 格式,以便在资源受限的边缘设备上进行高效部署。
最佳实践
- 资源管理:Auptimizer 支持多种计算资源,包括多台机器和 AWS EC2 实例。用户可以根据自己的需求选择合适的资源进行超参数优化。
- 模型压缩:使用 Auptimizer 的压缩工具,用户可以减少模型的内存复杂性和推理时间,从而更适合在边缘设备上部署。
- 实验跟踪:Auptimizer 提供了强大的分析工具,用户可以通过 Dashboard 跟踪实验进度,分析和对比不同的实验和优化方法。
4、典型生态项目
Auptimizer 作为一个开源项目,与其他一些开源工具和框架有良好的集成和互补关系:
- NNI (Neural Network Intelligence):Auptimizer 的压缩工具集成了 NNI 的模型压缩模块,支持 TensorFlow 和 PyTorch 模型的剪枝和量化。
- ONNX (Open Neural Network Exchange):Auptimizer 支持将模型转换为 ONNX 格式,便于在不同框架之间进行模型交换和部署。
- TensorFlow Lite:Auptimizer 还支持将模型转换为 TensorFlow Lite 格式,以便在移动设备和嵌入式系统上进行高效推理。
通过这些生态项目的集成,Auptimizer 为用户提供了更全面的模型优化和部署解决方案。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.76 K
暂无简介
Dart
773
192
Ascend Extension for PyTorch
Python
343
405
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249