Apache DolphinScheduler中K8s任务存在性检查的内存优化实践
2025-05-19 23:31:00作者:吴年前Myrtle
背景与问题分析
在Apache DolphinScheduler工作流调度系统中,Kubernetes任务插件通过K8sUtils工具类与Kubernetes集群进行交互。其中jobExist方法用于检查指定命名空间下是否存在特定任务,当前实现存在潜在的性能隐患。
原始实现会先获取命名空间下的所有Job资源,然后进行名称匹配。这种设计在长期运行的Kubernetes环境中会带来两个显著问题:
- Kubernetes默认不会自动清理已完成的Job资源,随着时间推移会积累大量历史Job记录
- 全量获取Job列表的操作会随着资源数量增长消耗大量内存,特别是在高并发场景下
技术实现优化方案
优化思路
更合理的实现方式应该是直接通过Job名称进行精确查询,而非全量获取后过滤。Kubernetes API本身支持通过资源名称直接获取特定资源,这符合Kubernetes的最佳实践。
具体改进
优化后的实现应该:
- 使用Kubernetes Client的withName方法直接查询指定名称的Job
- 仅获取需要的Job资源,避免不必要的数据传输
- 通过异常处理来判断资源是否存在(404状态码表示不存在)
代码示例
public boolean jobExist(String namespace, String jobName) {
try {
BatchV1Api batchV1Api = new BatchV1Api(apiClient);
V1Job job = batchV1Api.readNamespacedJob(jobName, namespace, null);
return job != null;
} catch (ApiException e) {
if (e.getCode() == 404) {
return false;
}
throw new RuntimeException("Failed to check job existence", e);
}
}
优化效果评估
这种改进会带来多方面的收益:
- 内存消耗降低:避免了全量Job列表的加载,内存使用量从O(n)降至O(1)
- 网络开销减少:API响应数据量显著减小
- 响应时间缩短:减少了不必要的数据传输和处理时间
- 系统稳定性提升:降低了因大资源列表导致的内存溢出风险
实施建议
对于使用Apache DolphinScheduler的管理员,建议:
- 及时升级到包含此优化的版本
- 对于生产环境,考虑设置Kubernetes的垃圾回收策略自动清理已完成Job
- 监控Kubernetes API服务器的负载情况
总结
这次优化展示了在分布式系统开发中,对API调用方式的精细考量可以带来显著的性能提升。通过遵循"按需获取"的原则,我们不仅解决了内存问题,还整体提升了系统的健壮性和响应能力。这也提醒开发者在使用Kubernetes API时,应该充分利用其细粒度的查询能力,而非简单采用"获取-过滤"的模式。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660