理解nanobind中Python对象在C++类中的内存管理问题
2025-06-28 07:15:51作者:农烁颖Land
在Python与C++的混合编程中,nanobind作为一个高效的绑定库,提供了便捷的互操作能力。然而,当我们在C++类中存储Python对象时,如果不正确处理引用关系,可能会导致内存泄漏问题。
问题现象
当开发者尝试在C++类中存储Python回调函数时,可能会遇到实例未被正确释放的情况。具体表现为:
- C++类的析构函数未被调用
- Python解释器报告实例泄漏
- 类型信息和函数信息也被标记为泄漏
问题根源
这种内存泄漏的根本原因在于Python的垃圾回收机制无法感知C++类中持有的Python对象引用。当出现以下情况时特别容易发生:
- C++类成员变量存储了Python对象(如std::function包装的Python回调)
- 没有正确实现Python的遍历协议(traversal protocol)
解决方案
要解决这个问题,我们需要实现Python的类型槽(type slot)中的tp_traverse函数。这个函数允许Python的垃圾回收器发现并跟踪C++对象内部持有的Python引用。
实现步骤
- 定义遍历函数:创建一个静态函数,用于遍历C++对象内部的所有Python引用
- 注册类型槽:在类定义时,将遍历函数注册到类型系统中
- 处理内部引用:在遍历函数中明确标记所有持有的Python对象
示例代码
#include <nanobind/nanobind.h>
#include <nanobind/stl/function.h>
namespace nb = nanobind;
using Callback = std::function<void()>;
class Container {
public:
Container(Callback& cb) : mCallback(cb) {}
~Container() {}
Callback &callback() { return mCallback; }
private:
Callback mCallback;
};
int container_tp_traverse(PyObject *self, visitproc visit, void *arg) {
Container *c = nb::inst_ptr<Container>(self);
nb::handle cb = nb::find(c->callback());
Py_VISIT(cb.ptr());
return 0;
}
PyType_Slot slots[] = {
{ Py_tp_traverse, (void *)container_tp_traverse },
{ 0, nullptr }
};
NB_MODULE(my_ext, m) {
nanobind::class_<Container>(m, "Container", nb::type_slots(slots))
.def(nanobind::init<Callback&>());
}
关键点解析
tp_traverse的作用:这是Python垃圾回收机制的关键部分,用于发现对象图中的所有引用关系nb::find的使用:尝试从C++对象中提取关联的Python对象Py_VISIT宏:标记发现的Python对象,确保它们不会被错误回收
最佳实践
- 当C++类持有任何Python对象时,都应考虑实现遍历协议
- 对于复杂的对象关系,需要确保遍历所有可能的Python引用
- 测试时应该验证对象是否被正确释放,特别是在循环引用场景下
总结
在nanobind中正确处理Python对象的内存管理需要开发者理解Python的垃圾回收机制。通过实现tp_traverse,我们可以确保Python能够正确追踪C++对象内部持有的Python引用,避免内存泄漏问题。这是混合编程中保证内存安全的重要一环。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1