pgBackRest多存储库配置与WAL归档优化实践
背景介绍
pgBackRest作为PostgreSQL的高性能备份工具,支持多种存储后端和灵活的备份策略配置。在实际生产环境中,我们经常需要针对不同用途配置不同的备份存储策略,比如短期灾难恢复和长期归档保存。本文将详细介绍如何通过pgBackRest实现多存储库配置,并优化WAL归档策略以节省存储空间。
多存储库配置方案
pgBackRest支持在一个stanza(对应一个PostgreSQL集群)下配置多个存储库(repository)。这种设计比使用多个stanza更符合pgBackRest的架构理念。以下是推荐的配置方式:
[global]
log-level-console=info
log-level-file=debug
start-fast=y
compress-type=zst
process-max=4
# 异步归档设置
archive-async=y
archive-push-queue-max=360GB
spool-path=/var/spool/pgbackrest
archive-get-queue-max=1GB
# 灾难恢复存储库(28天保留期)
repo1-gcs-bucket=gcp-disasterrecovery
repo1-retention-full=28
repo1-retention-full-type=time
# 长期归档存储库(1000天保留期)
repo2-gcs-bucket=gcp-archive
repo2-retention-full=1000
repo2-retention-full-type=time
[my_stanza_name]
pg1-path=/var/lib/postgresql/14/main/
这种配置下,archive-push命令会同时将WAL段推送到两个存储库中,确保数据冗余。
WAL归档优化策略
对于长期归档存储库,我们通常不需要保留完整的WAL归档历史,只需要保证备份的一致性即可。pgBackRest提供了repo-retention-archive参数来控制WAL归档的保留策略。
repo2-retention-archive=1
这个配置表示只保留最近一次备份所需的WAL文件。实际测试表明,在每周备份的情况下,WAL文件会在备份完成后被清理,仅保留最近一周的WAL归档。
关键技术点解析
-
备份一致性保障:pgBackRest会始终保留使备份一致所需的最小WAL文件集,无论
repo-retention-archive如何配置。 -
恢复能力差异:
- 灾难恢复存储库(repo1)保留完整WAL历史,支持28天内的任意时间点恢复(PITR)
- 长期归档存储库(repo2)仅支持恢复到备份时间点
-
恢复优先级:
archive-get命令会按存储库顺序查找WAL文件,可以利用这一点将高频访问的存储库配置为repo1以获得更快的恢复速度。
实施建议
-
备份调度:为长期归档存储库设置合理的备份频率(如每周全备),平衡存储成本和恢复粒度。
-
监控日志:关注expire日志中的
remove archive条目,确认WAL清理策略按预期工作。 -
恢复测试:定期测试从两个存储库恢复数据的能力,验证配置的正确性。
-
容量规划:根据WAL生成速率和备份频率计算长期归档存储库的容量需求。
总结
通过合理配置pgBackRest的多存储库功能和WAL归档策略,我们可以在保证数据安全的同时,有效控制长期归档的存储成本。这种方案特别适合有合规性存储要求的场景,能够在满足长期保留要求的同时避免不必要的存储开销。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00