go-http-metrics 开源项目安装与使用教程
2024-09-07 08:52:13作者:裘晴惠Vivianne
1. 项目目录结构及介绍
go-http-metrics 是一个用于 Go 语言的 HTTP 中间件模块,它能够独立于指标后端来测量 HTTP 请求的关键指标,支持 Prometheus 和 OpenCensus 等作为后端实现。项目设计灵活,兼容多种HTTP框架库。
以下是该仓库的基本目录结构及其简介:
.
├── README.md # 主要的项目说明文档。
├── CHANGELOG.md # 版本更新日志。
├── LICENSE # 许可证文件,遵循 Apache-2.0 协议。
├── Makefile # 构建与测试任务的 Makefile。
├── internal/mocks # 内部使用的模拟对象代码,通常用于测试。
├── metrics # 指标相关逻辑,包括不同后端如 Prometheus 的实现。
│ └── prometheus # Prometheus 指标记录器的具体实现。
├── middleware # HTTP 中间件的主要实现。
└── test # 测试目录,包含集成测试等。
└── integration # 整合测试代码。
metrics: 包含了各种指标记录器的实现,针对不同的监控系统进行适配。middleware: 实现了HTTP中间件的核心逻辑,用于拦截HTTP请求并记录必要的度量数据。test/integration: 集成测试案例,确保在真实或模拟环境下组件正常工作。
2. 项目的启动文件介绍
此项目本身不直接提供一个“启动文件”供应用立即运行,而是作为一个库供其他Go应用通过导入并在其HTTP服务器中使用。因此,“启动文件”的概念更多地是存在于你的应用程序内部,当你决定集成go-http-metrics时,在你的主程序或者服务初始化部分,你会引入并配置这个中间件,类似于下面这样的伪代码示例:
package main
import (
"net/http"
"github.com/slok/go-http-metrics/middleware"
// 导入其他的HTTP框架比如Gin, Echo等可能也需要。
)
func main() {
// 创建基本的HTTP server实例。
mux := http.NewServeMux()
// 使用go-http-metrics配置中间件。
recorder := middleware.PrometheusRecorder{} // 假设我们选择Prometheus作为后端
mw := middleware.New(middleware.Config{}, recorder)
wrappedHandler := mw.Middleware(http.HandlerFunc(yourHandler))
// 注册路由以及其他操作。
mux.HandleFunc("/", wrappedHandler)
// 启动HTTP服务器。
if err := http.ListenAndServe(":8080", mux); err != nil {
panic(err)
}
}
请注意,具体的启动流程依赖于您的应用程序架构以及所使用的HTTP服务框架。
3. 项目的配置文件介绍
go-http-metrics 作为一个Go库,并没有直接提供一个固定的配置文件模板。配置主要通过在创建中间件实例时传递的参数来完成,这些参数定义在middleware.Config类型中。例如,若需自定义配置,可以通过以下方式设置:
cfg := middleware.Config{
// 这里可以设置一些特定的配置项,
// 如记录请求大小的阈值、标签等,具体配置项需要参照最新文档或源码中的Config结构体定义。
}
recorder := middleware.PrometheusRecorder{}
mw := middleware.New(cfg, recorder)
对于更复杂的需求,如对接特定监控系统的配置(比如Prometheus的地址),这通常是在使用Prometheus自身库时进行配置的,而非go-http-metrics直接管理。记住,实际的配置细节应基于你所选择的监控后端和框架的文档来定制。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
191
210
暂无简介
Dart
631
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
110
仓颉编译器源码及 cjdb 调试工具。
C++
128
858
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
211