Piccolo ORM 实现表级别操作监控的技术方案
2025-07-10 21:07:00作者:裘晴惠Vivianne
在数据库应用开发中,对数据表操作的监控和审计是一个常见需求。本文将介绍如何在Piccolo ORM框架中实现类似Rails ActiveRecord的回调机制,通过表级别的操作监控来记录数据变更历史。
核心实现原理
Piccolo ORM本身提供了查询操作的回调机制,但对于创建、更新和删除操作,需要通过重写表方法来实现监控功能。核心思路是创建一个基础表类,重写其save和remove方法,在这些方法中嵌入监控逻辑。
监控表设计
首先需要设计一个监控日志表,用于记录所有操作的历史:
class ActionType(str, Enum):
CREATE = "CREATE"
UPDATE = "UPDATE"
DELETE = "DELETE"
class Monitor(Table, db=DB):
action_time = Timestamp()
action_type = Varchar(choices=ActionType)
table_name = Varchar()
row_id = Integer()
history = JSON()
这个表结构包含了操作时间、操作类型、表名、行ID和历史数据快照,能够完整记录每一次数据变更。
基础表类的实现
创建一个基础表类BaseTable,所有需要监控的表都继承自这个类:
class BaseTable(Table, db=DB):
__monitor__ = False # 监控开关
def save(self, columns=None):
# 重写save方法实现创建和更新监控
pass
def remove(self):
# 重写remove方法实现删除监控
pass
监控逻辑的实现
在基础表类中,我们需要实现具体的监控逻辑:
- 保存操作监控:区分创建和更新操作
async def run(self, *args, **kwargs):
saved = await save_(columns=columns).run(*args, **kwargs)
if monitor:
if isinstance(pk, Unquoted): # 创建操作
await Monitor.record_save_action(table, saved[0]["id"])
else: # 更新操作
await Monitor.record_patch_action(table, pk)
- 删除操作监控:
async def run(self, *args, **kwargs):
await remove_().run(*args, **kwargs)
if monitor:
await Monitor.record_delete_action(table, row_id=pk)
实际应用示例
创建一个需要监控的表非常简单,只需继承BaseTable并设置监控开关:
class Manager(BaseTable, db=DB):
name = Varchar(length=100)
__monitor__ = True # 启用监控
使用时与普通Piccolo表完全一致,所有操作会自动记录到监控表中:
# 创建记录
await Manager(name="测试用户").save()
# 更新记录
manager = await Manager.objects().first()
manager.name = "修改后的名称"
await manager.save()
# 删除记录
await manager.remove()
监控数据查询
所有操作历史都存储在Monitor表中,可以方便地进行查询和分析:
# 查询所有监控记录
records = await Monitor.select().run()
技术优势
- 非侵入式设计:业务表无需修改原有逻辑,只需继承基础表类
- 完整历史记录:不仅记录操作类型,还保存了数据快照
- 性能影响小:监控操作异步执行,不影响主业务流程
- 灵活可控:通过
__monitor__开关控制是否启用监控
扩展思路
这种实现方式可以进一步扩展:
- 增加操作人记录,实现完整的审计追踪
- 添加操作原因字段,记录变更背景
- 实现数据版本控制,支持回滚到任意版本
- 集成到管理后台,提供可视化操作历史
通过这种表级别操作监控的实现,Piccolo ORM应用可以获得类似Rails ActiveRecord的回调功能,为数据安全和审计需求提供了可靠保障。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南
项目优选
收起
deepin linux kernel
C
24
8
Ascend Extension for PyTorch
Python
199
219
暂无简介
Dart
637
145
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.74 K