Databend v1.2.736-nightly版本发布:查询优化与存储增强
Databend是一个开源的云原生数据仓库,以其高性能、弹性扩展和易用性著称。最新发布的v1.2.736-nightly版本带来了一系列重要的功能增强和性能优化,特别是在查询处理和存储管理方面有了显著提升。
核心功能增强
查询工作负载管理
新版本引入了通过SQL管理查询工作负载的能力,使管理员能够更灵活地控制和优化系统资源分配。这一功能对于多租户环境尤为重要,可以有效防止资源争用问题。
Iceberg数据缓存支持
Databend现在支持Iceberg格式的数据缓存,这一改进显著提升了处理Iceberg格式数据的性能。通过本地缓存机制,减少了远程数据访问的延迟,特别适合频繁访问的场景。
Ngram索引优化
实现了针对Fuse表的Ngram索引功能,大幅提升了LIKE查询的性能。这一优化特别适合处理文本数据的模糊匹配场景,使得包含通配符的查询能够更快执行。
存储管理改进
自动清理机制
新增了表选项enable_auto_vacuum
,允许用户控制是否启用表的自动清理功能。同时引入的data_retention_num_snapshots_to_keep
设置,让用户可以精细控制保留的快照数量,在存储空间和恢复能力之间取得平衡。
虚拟列增强
改进了虚拟列的支持,新增了fuse_virtual_column
函数用于显示虚拟列的大小信息。这一功能为存储优化和性能调优提供了更多可见性。
性能优化与稳定性提升
查询执行优化
优化了FLATTEN函数的执行效率,特别是在带有过滤条件的情况下。同时改进了排序操作的稳定性,即使启用了溢出机制也能避免OOM问题。
元数据服务改进
重构了元数据服务的本地测试支持,移除了嵌入式元存储的实现,使架构更加清晰。新增的初始化完成标志为监控提供了更好的支持。
总结
Databend v1.2.736-nightly版本在查询性能、存储管理和系统稳定性方面都有显著提升。特别是新增的工作负载管理、Iceberg缓存支持和Ngram索引等功能,使得Databend在处理复杂分析工作负载时更加高效可靠。这些改进进一步巩固了Databend作为现代云原生数据仓库的地位,为数据密集型应用提供了更强大的支持。
ERNIE-4.5-VL-424B-A47B-Paddle
ERNIE-4.5-VL-424B-A47B 是百度推出的多模态MoE大模型,支持文本与视觉理解,总参数量424B,激活参数量47B。基于异构混合专家架构,融合跨模态预训练与高效推理优化,具备强大的图文生成、推理和问答能力。适用于复杂多模态任务场景00pangu-pro-moe
盘古 Pro MoE (72B-A16B):昇腾原生的分组混合专家模型014kornia
🐍 空间人工智能的几何计算机视觉库Python00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。00
热门内容推荐
最新内容推荐
项目优选









