OR-Tools路由求解器中Lin-Kernighan算子的实现分析
概述
OR-Tools作为Google开源的优化工具库,其路由求解器模块提供了多种路径优化算法。其中Lin-Kernighan算子是一种高效的局部搜索算法,用于改进旅行商问题(TSP)的解决方案。本文将深入分析该算子在OR-Tools中的实现细节,特别是关于2-opt交换操作的关键实现逻辑。
Lin-Kernighan算法核心思想
Lin-Kernighan算法是一种变邻域搜索算法,它通过系统地探索和评估不同的路径变换来改进当前解。算法的核心在于构建一系列交替的边删除和添加操作,形成k-opt交换(k≥2),从而获得更优的路径。
实现问题分析
在OR-Tools的早期版本(v9.10)中,Lin-Kernighan算子的实现存在一个关键逻辑错误,主要出现在路径反转和变量更新的环节:
-
路径反转操作:原实现使用了
ReverseChain(node, out, &chain_last),这会导致路径反转的起始点选择错误。正确的做法应该是从基础节点(base)开始反转,即ReverseChain(base, out, &chain_last)。 -
变量更新逻辑:在每次迭代后,原代码错误地将
node赋值为chain_last,而next赋值为out。根据算法逻辑,应该将node更新为out,next更新为chain_last。
实例分析
假设有一条初始路径:1→2→3→4→5→6→7→8→9→10→11→12→13→14→15(15与1相同,表示闭环)
正确操作流程:
- 从节点1(base)开始,找到其后续节点2(next)的最佳邻居7(out)
- 反转从base到out的路径段,得到新路径:1→6→5→4→3→2→7→8→...→15
- 更新变量:node=7(out),next=6(chain_last)
- 在下一轮迭代中,寻找节点6(next)的最佳邻居11(out)
- 再次从base开始反转,得到最终优化路径:1→10→9→8→7→2→3→4→5→6→11→12→...→15
错误实现的影响:
- 变量更新错误会导致后续搜索方向偏离预期
- 路径反转起点错误会产生不合理的路径结构
- 最终可能导致算法收敛到次优解甚至无效解
问题修复与算法改进
该问题在OR-Tools的主分支中已得到修复。修复后的实现确保了:
- 路径反转始终从基础节点开始
- 变量更新符合算法原始设计意图
- 搜索过程能够正确探索解空间
总结
OR-Tools中Lin-Kernighan算子的这一实现问题提醒我们,在复杂算法的实现过程中,即使是微小的变量赋值错误也可能导致整个算法行为的偏离。对于路径优化算法的实现,特别需要注意:
- 节点指针的更新逻辑必须严格符合算法设计
- 路径变换操作的范围和方向需要精确控制
- 每次迭代后的状态转移必须保持一致性
理解这些实现细节不仅有助于正确使用OR-Tools,也为开发其他优化算法提供了有价值的参考。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00