OpenImageDenoise中使用CUDA直接处理R16G16B16A16_FLOAT格式光照贴图的技术实践
在光线追踪和全局光照应用中,光照贴图(Lightmap)的降噪处理是一个关键环节。OpenImageDenoise(OIDN)作为一个高效的降噪库,提供了CPU和GPU两种处理方式。本文将分享一个使用OIDN CUDA后端直接处理DXGI_FORMAT_R16G16B16A16_FLOAT格式光照贴图的技术实践。
技术背景
传统的光照贴图降噪流程通常需要将数据从GPU显存读回CPU内存进行处理,这会导致额外的数据传输开销。OIDN支持通过CUDA直接在GPU上处理数据,避免了这种开销。然而,在处理特定格式的纹理时可能会遇到一些技术挑战。
初始方案与问题
最初的实现方案采用了以下技术路线:
- 创建OIDN CUDA设备
- 在D3D12中创建R16G16B16A16_FLOAT格式的共享纹理
- 通过Windows共享句柄机制让CUDA访问纹理数据
- 配置OIDN过滤器处理HALF3格式数据,手动指定跨距跳过alpha通道
然而,这种方案在降噪后出现了明显的块状伪影,如下图所示:
[此处描述图像显示降噪结果出现块状伪影]
问题分析
经过深入分析,这些问题可能源于以下几个方面:
-
纹理内存布局:现代GPU通常会对纹理数据进行优化存储,包括块状排布(tiling)和内存填充(padding),而CUDA直接访问时可能无法正确解析这种布局。
-
格式转换:R16G16B16A16_FLOAT到HALF3的转换过程中可能存在精度损失或数据对齐问题。
-
跨距设置:虽然手动指定了pixelByteStride和rowByteStride,但纹理的实际内存布局可能与线性假设不符。
解决方案
最终采用的解决方案是:
-
改用缓冲区(Buffer)替代纹理:缓冲区保证线性内存布局,避免了纹理的复杂内存排布问题。
-
保持数据格式一致性:确保输入输出数据的格式和布局完全匹配OIDN的要求。
-
正确设置跨距参数:对于包含填充的数据,精确计算每个像素和每行的字节跨距。
实现效果
采用缓冲区方案后,降噪效果与CPU处理结果相当,同时保持了完全的GPU端处理流程,避免了CPU-GPU间的数据传输开销。最终效果平滑自然,没有出现之前的块状伪影。
技术要点总结
-
内存布局至关重要:当使用共享内存时,必须确保所有参与方对内存布局的理解一致。
-
格式选择:HALF3格式对于光照贴图降噪通常已经足够,但要注意数据精度需求。
-
性能考量:GPU直接处理可以显著减少延迟,特别适合实时或交互式应用。
-
跨API协作:D3D12与CUDA的互操作需要特别注意同步和资源管理。
最佳实践建议
-
对于简单的数据处理,优先考虑使用缓冲区而非纹理。
-
在共享资源时,明确记录和验证内存布局假设。
-
进行小规模验证测试,确保数据格式和跨距设置正确。
-
考虑使用工具如NVIDIA Nsight来调试CUDA与图形API的互操作问题。
通过这次实践,我们验证了OIDN在GPU端直接处理光照贴图的可行性,为实时渲染管线中的降噪处理提供了一种高效的技术方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00