Kusto Query Language (KQL) 项目文档
1. 项目介绍
Kusto Query Language (KQL) 是由微软开发的一种简单而强大的查询语言,用于查询结构化、半结构化和非结构化数据。KQL 假设数据模型为关系型数据模型,包括数据库、表和列等实体。该语言具有高度的表达性,易于阅读和理解查询意图,并且针对数据分析场景进行了优化。
KQL 广泛应用于 Azure Data Explorer、Azure Monitor、Microsoft Sentinel 等微软服务中,适用于查询遥测数据、指标和日志,支持文本搜索、时间序列操作、分析和聚合、地理空间分析等多种功能。
2. 项目快速启动
2.1 安装与配置
Kusto Query Language 的安装和配置通常不需要额外的步骤,因为它主要用于查询和分析数据,而不是作为独立的应用程序运行。你可以在支持 KQL 的微软服务中直接使用它。
2.2 基本查询示例
以下是一个简单的 KQL 查询示例,用于从 StormEvents 表中查询特定时间段内的风暴事件数量:
StormEvents
| where StartTime between (datetime(2007-11-01) .. datetime(2007-12-01))
| where State == "FLORIDA"
| count
2.3 运行查询
- 打开 Azure Data Explorer 或支持 KQL 的微软服务。
- 在查询编辑器中输入上述查询代码。
- 点击“运行”按钮,查看查询结果。
3. 应用案例和最佳实践
3.1 日志分析
KQL 在日志分析中非常强大,可以用于过滤、排序和聚合日志数据。例如,以下查询用于分析特定时间段内的错误日志:
Logs
| where Level == "Error" and Timestamp between (datetime(2023-01-01) .. datetime(2023-01-31))
| summarize ErrorCount = count() by EventType
3.2 性能监控
KQL 可以用于监控应用程序的性能指标。例如,以下查询用于计算特定时间段内的平均响应时间:
PerformanceMetrics
| where Timestamp between (datetime(2023-01-01) .. datetime(2023-01-31))
| summarize AvgResponseTime = avg(ResponseTime) by ApplicationName
3.3 安全分析
KQL 在安全分析中也非常有用,可以用于检测异常行为。例如,以下查询用于检测登录失败的次数:
SecurityEvents
| where EventType == "LoginFailed"
| summarize FailedLoginCount = count() by UserId, bin(Timestamp, 1h)
4. 典型生态项目
4.1 Azure Data Explorer
Azure Data Explorer 是一个快速、完全托管的数据分析服务,支持 KQL 查询语言。它适用于实时分析大量流式数据,广泛应用于日志和遥测数据分析。
4.2 Azure Monitor
Azure Monitor 使用 KQL 进行日志查询和分析,帮助用户监控 Azure 资源的性能和可用性。通过 KQL,用户可以编写复杂的查询来分析日志数据。
4.3 Microsoft Sentinel
Microsoft Sentinel 是一个云原生的安全信息和事件管理 (SIEM) 解决方案,使用 KQL 进行安全事件的查询和分析。KQL 帮助安全分析师快速识别和响应安全威胁。
通过以上模块的介绍,你可以快速了解 Kusto Query Language 的基本概念、使用方法以及在不同场景中的应用。希望这份文档能帮助你更好地利用 KQL 进行数据分析和查询。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00