Flask-MonitoringDashboard 使用教程
2024-09-13 19:08:48作者:邬祺芯Juliet
1. 项目介绍
1.1 项目概述
Flask-MonitoringDashboard 是一个用于 Flask 应用程序的监控扩展,旨在自动监控 Flask/Python Web 服务的性能和使用情况。它提供了四个主要功能,帮助开发者轻松监控应用程序的性能和使用情况。
1.2 主要功能
- 监控性能和使用情况:显示哪些端点处理了大量请求以及处理速度。
- 请求和端点分析:跟踪每个请求的执行路径并存储到数据库中,帮助开发者了解代码中哪些函数执行时间最长。
- 异常请求处理:自动检测并存储处理时间过长的请求的额外信息(如堆栈跟踪、请求值、请求头等)。
- 收集额外信息:配置并收集关于 Flask 应用程序的额外信息,如用户注册数量等。
2. 项目快速启动
2.1 安装
首先,确保你已经安装了 Python 和 pip。然后,使用以下命令安装 Flask-MonitoringDashboard:
pip install flask_monitoringdashboard
2.2 配置
在你的 Flask 应用程序中添加以下代码以启用监控:
from flask import Flask
import flask_monitoringdashboard as dashboard
app = Flask(__name__)
# 绑定监控仪表盘
dashboard.bind(app)
@app.route("/test")
def test():
return 'ok'
if __name__ == "__main__":
app.run()
2.3 运行
运行你的 Flask 应用程序后,访问 http://localhost:5000/dashboard
即可查看监控仪表盘。
3. 应用案例和最佳实践
3.1 应用案例
- 性能优化:通过监控仪表盘,开发者可以快速识别处理时间较长的端点,并进行优化。
- 异常检测:自动检测并记录处理时间过长的请求,帮助开发者及时发现和解决问题。
- 数据收集:配置并收集关于应用程序的额外信息,如用户注册数量,帮助分析用户行为。
3.2 最佳实践
- 定期检查:定期检查监控仪表盘,确保应用程序的性能和稳定性。
- 配置优化:根据实际需求调整监控仪表盘的配置,避免不必要的资源消耗。
- 数据分析:利用收集的数据进行分析,优化应用程序的性能和用户体验。
4. 典型生态项目
4.1 Flask
Flask 是一个轻量级的 Python Web 框架,广泛用于构建 Web 应用程序。Flask-MonitoringDashboard 作为 Flask 的扩展,提供了强大的监控功能。
4.2 SQLAlchemy
SQLAlchemy 是一个 Python SQL 工具包和对象关系映射(ORM)库,常用于与数据库交互。Flask-MonitoringDashboard 可以与 SQLAlchemy 结合使用,监控数据库操作的性能。
4.3 Celery
Celery 是一个分布式任务队列,常用于处理后台任务。通过监控 Celery 任务的执行情况,可以优化任务调度策略。
通过以上模块的介绍和实践,开发者可以快速上手并充分利用 Flask-MonitoringDashboard 的功能,提升 Flask 应用程序的性能和稳定性。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0117AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析2 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp英语课程填空题提示缺失问题分析6 freeCodeCamp课程页面空白问题的技术分析与解决方案7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
223
2.26 K

暂无简介
Dart
525
116

React Native鸿蒙化仓库
JavaScript
210
286

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openvela 操作系统专为 AIoT 领域量身定制。服务框架:主要包含蓝牙、电话、图形、多媒体、应用框架、安全、系统服务框架。
CMake
795
12

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
984
581

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
94

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
44
0