CogVideoX 1.5 LoRA微调中的帧数对齐问题解析与解决方案
2025-05-21 20:35:05作者:伍希望
在视频生成模型CogVideoX 1.5的LoRA微调过程中,研究人员发现了一个关键的帧数对齐问题。这个问题源于模型架构中的patch_size_t参数设置与输入视频帧数之间的不匹配,导致训练过程中出现reshape错误。
问题背景
CogVideoX 1.5模型采用了特殊的时空注意力机制,其中patch_size_t参数设置为2。这意味着在时间维度上,模型会将视频帧分成大小为2的块进行处理。当输入视频经过VAE编码后,原始帧数会被压缩,例如81帧会变为21帧(81//4+1),49帧会变为13帧(49//4+1)。由于patch_size_t=2,这些压缩后的帧数必须能被2整除,否则在reshape操作时会报错。
技术细节分析
问题的核心在于模型中的reshape操作:
image_embeds = image_embeds.reshape(
batch_size, num_frames // p_t, p_t, height // p, p, width // p, p, channels
)
其中p_t即patch_size_t=2。当压缩后的帧数(如13或21)不能被2整除时,这个操作就会失败。
解决方案探索
研究团队提出了几种解决方案:
-
调整输入帧数:将原始帧数设置为能被8整除的值(如85帧),这样经过VAE压缩后变为22帧(85//4+1),可以被2整除。
-
修改RoPE配置:在旋转位置编码(RoPE)层,需要相应调整num_frames参数,确保与patch_size_t对齐。
-
代码层面修复:在训练过程中增加帧数补齐逻辑,类似于推理时已经实现的机制:
if self.transformer.config.patch_size_t is not None:
shape = shape[:1] + (shape[1] + shape[1] % self.transformer.config.patch_size_t,) + shape[2:]
实现建议
对于实际训练,建议采用以下配置:
- 设置max_num_frames为85(产生22压缩帧)
- 确保patch_size_t=2
- 在旋转位置编码层进行相应调整
这种配置既保持了模型原有的时空处理能力,又避免了reshape错误,同时与推理时的处理逻辑保持一致。
技术影响
这个问题的解决不仅修复了训练错误,还带来了额外的好处:
- 提高了训练稳定性
- 确保了训练与推理的一致性
- 为多分辨率训练奠定了基础
- 优化了位置编码机制
通过这一系列改进,CogVideoX 1.5的LoRA微调变得更加可靠和高效,为图像到视频生成任务提供了更强大的支持。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C038
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0118
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
366
Ascend Extension for PyTorch
Python
240
272
暂无简介
Dart
693
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869