Sentence-Transformers中的MNR损失优化与AnglE损失实现探讨
在自然语言处理领域,Sentence-Transformers项目因其高效的句子嵌入能力而广受欢迎。近期,该项目社区围绕损失函数的优化与扩展展开了深入讨论,特别是针对Multiple Negatives Ranking (MNR)损失的改进和新型AnglE损失函数的实现。
MNR损失的内存优化方案
MNR损失函数在训练过程中受益于大批量数据,因为更大的批次可以提供更多的负样本。然而,在显存受限的环境中,这种需求带来了显著挑战。传统梯度累积方法在此场景下并不适用,因为MNR损失的计算特性要求同时处理所有样本。
社区成员提出了一种创新解决方案,参考了论文《Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup》中提出的梯度累积算法。该算法专门针对对比学习场景设计,能够在内存受限的情况下有效模拟大批量训练效果。这一方案已被实现为CachedMultipleNegativesRankingLoss类,并将在项目下一个版本中发布。
AnglE损失函数的实现探索
在损失函数扩展方面,社区开始关注AnglE损失函数的实现。这种新型损失函数结合了三种关键组件:
- 基于排序的余弦损失(不同于现有的CosineSimilarityLoss)
- 标准MNR损失
- 专门的AnglE损失项
技术分析表明,论文中提到的"余弦损失"实际上是一种排序优化目标,其灵感来源于特定的技术博客,通过优化样本对的相对排序而非绝对相似度来提升模型性能。这种设计使得模型能够更好地捕捉句子间的语义关系层次。
项目发展方向
从技术讨论中可以看出,Sentence-Transformers项目正朝着以下方向发展:
- 内存效率优化:针对不同硬件配置优化训练过程,特别是显存受限环境
- 损失函数创新:整合最新研究成果,提供更多训练目标选择
- 组合训练支持:探索多损失函数加权组合的灵活配置方案
这些技术演进将进一步提升Sentence-Transformers在各种NLP任务中的表现,特别是在语义相似度计算、信息检索等需要精细语义区分的场景中。项目维护者也计划整理更详细的开发路线图,以引导社区贡献方向。
对于实践者而言,理解这些损失函数的技术细节和适用场景,将有助于在特定任务中选择最合适的训练策略,从而获得更优的句子表示模型。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00