GNN-Motion-Planning 项目启动与配置教程
2025-05-16 02:07:30作者:盛欣凯Ernestine
1. 项目目录结构及介绍
gnn-motion-planning 项目的主要目录结构如下所示:
docs: 存放项目文档。scripts: 存放项目运行所需的脚本文件。src: 源代码目录,包含主要的算法实现和模块。data: 存储数据集。models: 包含图神经网络模型的代码。train: 训练相关代码。test: 测试相关代码。utils: 工具函数和类。
tests: 测试代码,用于验证项目功能。requirements.txt: 项目依赖的Python库列表。README.md: 项目说明文件。
每个目录下的文件都是项目运行不可或缺的部分,确保了项目的完整性和可运行性。
2. 项目的启动文件介绍
项目的启动文件通常是位于 src 目录下的 main.py 文件。该文件负责初始化项目,加载配置文件,并启动整个训练或测试流程。以下是一个基本的启动文件内容示例:
import argparse
from train import train_model
from test import test_model
def main():
parser = argparse.ArgumentParser(description="GNN Motion Planning")
parser.add_argument('--mode', type=str, default='train', help='Mode: train or test')
args = parser.parse_args()
if args.mode == 'train':
train_model()
elif args.mode == 'test':
test_model()
else:
raise ValueError("Mode must be 'train' or 'test'")
if __name__ == "__main__":
main()
在这个示例中,main.py 文件使用 argparse 库来解析命令行参数,根据用户指定的模式(训练或测试)调用相应的函数。
3. 项目的配置文件介绍
项目的配置文件通常是一个 yaml 或 json 文件,用于存储项目运行时的参数设置。配置文件位于项目根目录或 src 目录下,例如 config.yaml。以下是一个配置文件的示例内容:
model:
name: GNN
hidden_units: 64
learning_rate: 0.001
train:
batch_size: 32
epochs: 100
test:
batch_size: 32
在这个配置文件中,定义了模型的结构参数(如隐藏单元数和学习率),以及训练和测试时的批次大小和迭代次数。这样的配置文件使得项目参数的调整更加灵活和方便。
启动项目时,可以通过读取配置文件来加载这些参数,如下所示:
import yaml
def load_config(config_path):
with open(config_path, 'r') as file:
config = yaml.safe_load(file)
return config
config = load_config('config.yaml')
通过以上介绍,您可以了解到如何启动和配置 gnn-motion-planning 项目。按照上述步骤操作,您应该能够成功运行该项目。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355