Stable Baselines3中ARS算法的locals['dones']访问问题解析
在基于Stable Baselines3框架进行强化学习开发时,用户在使用ARS(Augmented Random Search)算法时遇到了一个典型问题:无法通过_on_step回调函数访问self.locals['dones']字典键值。这个问题涉及到ARS算法的特殊实现机制,值得深入分析。
ARS算法作为一种基于种群的优化算法,其核心思想是通过随机搜索策略来优化策略参数。与其他标准强化学习算法不同,ARS采用异步评估候选解的方式来实现最大计算效率。这种异步评估机制导致了回调函数中标准环境终止标志(dones)的访问方式存在差异。
在标准强化学习流程中,dones标志通常用于表示一个episode是否结束。大多数算法会在locals字典中提供这个信息供回调函数使用。然而ARS算法的实现中,由于候选解评估的特殊性,这个键值没有被自动填充到locals字典中。
要解决这个问题,开发者需要直接修改ARS算法的源代码。具体而言,需要调整算法中处理环境交互和回调触发的部分,确保在适当的时候将dones信息添加到locals字典中。这通常涉及到对算法主循环的修改,特别是在评估候选解和收集环境反馈的阶段。
值得注意的是,这种修改需要对ARS算法的内部工作机制有深入理解。开发者应该仔细考虑修改可能带来的性能影响,特别是在保持算法异步评估优势的同时确保回调功能的完整性。对于大多数应用场景,如果不需要在每一步都访问dones信息,也可以考虑通过其他方式获取环境终止状态,或者重新设计回调逻辑以适应ARS的特殊性。
这个问题也提醒我们,在使用非标准算法时,需要特别注意其实现细节可能带来的API差异。在Stable Baselines3生态中,这类特殊算法通常会被放在contrib扩展包中,正是为了区分标准实现和这些需要特殊处理的变体算法。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00