Stable Baselines3中ARS算法的locals['dones']访问问题解析
在基于Stable Baselines3框架进行强化学习开发时,用户在使用ARS(Augmented Random Search)算法时遇到了一个典型问题:无法通过_on_step回调函数访问self.locals['dones']字典键值。这个问题涉及到ARS算法的特殊实现机制,值得深入分析。
ARS算法作为一种基于种群的优化算法,其核心思想是通过随机搜索策略来优化策略参数。与其他标准强化学习算法不同,ARS采用异步评估候选解的方式来实现最大计算效率。这种异步评估机制导致了回调函数中标准环境终止标志(dones)的访问方式存在差异。
在标准强化学习流程中,dones标志通常用于表示一个episode是否结束。大多数算法会在locals字典中提供这个信息供回调函数使用。然而ARS算法的实现中,由于候选解评估的特殊性,这个键值没有被自动填充到locals字典中。
要解决这个问题,开发者需要直接修改ARS算法的源代码。具体而言,需要调整算法中处理环境交互和回调触发的部分,确保在适当的时候将dones信息添加到locals字典中。这通常涉及到对算法主循环的修改,特别是在评估候选解和收集环境反馈的阶段。
值得注意的是,这种修改需要对ARS算法的内部工作机制有深入理解。开发者应该仔细考虑修改可能带来的性能影响,特别是在保持算法异步评估优势的同时确保回调功能的完整性。对于大多数应用场景,如果不需要在每一步都访问dones信息,也可以考虑通过其他方式获取环境终止状态,或者重新设计回调逻辑以适应ARS的特殊性。
这个问题也提醒我们,在使用非标准算法时,需要特别注意其实现细节可能带来的API差异。在Stable Baselines3生态中,这类特殊算法通常会被放在contrib扩展包中,正是为了区分标准实现和这些需要特殊处理的变体算法。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00