Stable Baselines3中ARS算法的locals['dones']访问问题解析
在基于Stable Baselines3框架进行强化学习开发时,用户在使用ARS(Augmented Random Search)算法时遇到了一个典型问题:无法通过_on_step回调函数访问self.locals['dones']字典键值。这个问题涉及到ARS算法的特殊实现机制,值得深入分析。
ARS算法作为一种基于种群的优化算法,其核心思想是通过随机搜索策略来优化策略参数。与其他标准强化学习算法不同,ARS采用异步评估候选解的方式来实现最大计算效率。这种异步评估机制导致了回调函数中标准环境终止标志(dones)的访问方式存在差异。
在标准强化学习流程中,dones标志通常用于表示一个episode是否结束。大多数算法会在locals字典中提供这个信息供回调函数使用。然而ARS算法的实现中,由于候选解评估的特殊性,这个键值没有被自动填充到locals字典中。
要解决这个问题,开发者需要直接修改ARS算法的源代码。具体而言,需要调整算法中处理环境交互和回调触发的部分,确保在适当的时候将dones信息添加到locals字典中。这通常涉及到对算法主循环的修改,特别是在评估候选解和收集环境反馈的阶段。
值得注意的是,这种修改需要对ARS算法的内部工作机制有深入理解。开发者应该仔细考虑修改可能带来的性能影响,特别是在保持算法异步评估优势的同时确保回调功能的完整性。对于大多数应用场景,如果不需要在每一步都访问dones信息,也可以考虑通过其他方式获取环境终止状态,或者重新设计回调逻辑以适应ARS的特殊性。
这个问题也提醒我们,在使用非标准算法时,需要特别注意其实现细节可能带来的API差异。在Stable Baselines3生态中,这类特殊算法通常会被放在contrib扩展包中,正是为了区分标准实现和这些需要特殊处理的变体算法。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00