jsonschema 中浮点数范围验证的注意事项
2025-06-13 01:59:31作者:袁立春Spencer
在 Python 的 jsonschema 库中,当处理浮点数范围验证时,开发者可能会遇到一些意外的验证失败情况。本文将通过一个实际案例,深入分析问题原因并提供解决方案。
问题现象
当使用 jsonschema 验证浮点数范围时,某些看似合理的数值会被错误地判定为验证失败。例如,在验证一个数值是否在 4 到 6.9 之间的范围内时,5.6 会被判定为无效,而 5.7 则能通过验证。
问题根源
这个问题的根本原因在于 Python 中浮点数的精度处理方式。在 JSON 解析过程中,默认会使用 Python 的浮点数类型(float)来解析数字。由于浮点数在计算机中的表示存在精度限制,5.6 实际上并不能被 0.1 精确整除。
解决方案
要解决这个问题,可以使用 Python 的 decimal 模块来替代默认的浮点数解析方式。decimal 模块提供了更高精度的十进制运算能力,能够正确处理这类验证场景。
具体实现方法是在加载 JSON 数据时,通过 parse_float 参数指定使用 decimal.Decimal 来解析浮点数:
import decimal
import json
from pathlib import Path
import jsonschema.validators
def load_json_with_decimal(path):
return json.loads(path.read_text(), parse_float=decimal.Decimal)
data = load_json_with_decimal(Path("data.json"))
schema = load_json_with_decimal(Path("schema.json"))
Validator = jsonschema.validators.validator_for(schema)
validator = Validator(schema)
print(validator.is_valid(data))
命令行工具中的处理
如果使用 jsonschema 的命令行工具进行验证,需要注意默认情况下它也会使用浮点数解析。目前命令行工具可能没有直接提供切换解析方式的选项,这种情况下可以考虑:
- 使用 Python 脚本自定义验证流程
- 检查是否有相关命令行参数可以配置解析方式
- 考虑使用其他支持更灵活解析方式的验证工具
最佳实践建议
- 对于需要精确数值验证的场景,优先考虑使用 decimal.Decimal 进行解析
- 在设计 JSON Schema 时,明确数值的精度要求
- 在测试阶段包含边界值和常见值的验证用例
- 考虑在文档中注明数值处理的精度要求
通过理解这些原理和采用适当的解决方案,开发者可以避免在 jsonschema 中进行浮点数范围验证时遇到的意外问题。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258