Pydantic中computed_field在JSON Schema中的序列化模式解析
2025-05-09 14:57:44作者:侯霆垣
在Python的数据验证和设置管理库Pydantic中,computed_field装饰器是一个强大的特性,它允许开发者将模型中的property或cached_property属性包含在模型的序列化输出中。然而,许多开发者在使用过程中发现,这些计算字段并不会自动出现在模型的JSON Schema中,这实际上是一个设计特性而非缺陷。
computed_field的基本用法
computed_field装饰器主要用于标记那些需要通过计算得出的模型字段。例如,在一个表示盒子的模型中,我们可以这样定义一个体积计算字段:
from pydantic import BaseModel, computed_field
class Box(BaseModel):
width: float
height: float
depth: float
@computed_field
@property
def volume(self) -> float:
return self.width * self.height * self.depth
在这个例子中,volume字段不会直接存储,而是通过其他三个维度字段计算得出。
JSON Schema中的行为差异
当开发者调用Box.model_json_schema()时,可能会惊讶地发现volume字段没有出现在输出中。这是因为Pydantic默认使用"validation"模式生成JSON Schema,而计算字段在这种模式下不会被包含。
要包含计算字段,需要显式指定模式参数:
Box.model_json_schema(mode="serialization")
这种设计决策背后有着合理的考量:
- 验证模式下,Schema主要用于描述输入数据的结构,而计算字段通常不是输入的一部分
- 序列化模式下,Schema需要准确反映模型输出的完整结构
实际应用建议
在实际开发中,理解这一特性非常重要:
- API文档生成:如果你使用FastAPI等框架自动生成API文档,确保文档能正确显示所有响应字段
- 客户端代码生成:生成客户端代码时,确保使用正确的模式获取完整的模型Schema
- 前后端协作:前端开发者需要了解哪些字段是计算得出的,不会出现在请求体中但会出现在响应中
对于需要同时处理输入和输出的场景,可以考虑创建单独的输入模型和输出模型,或者使用模型继承来区分不同用途的Schema。
总结
Pydantic的这一设计体现了其灵活性和对实际应用场景的深入思考。计算字段在序列化模式下的包含行为使得API设计更加清晰,同时也保持了输入验证的严谨性。开发者在使用这一特性时,应当根据具体需求选择合适的Schema生成模式,以确保系统各组件对数据结构的理解保持一致。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~055CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0380- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
871
515

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
346
380

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
334
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
31
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
603
58