Swift Snapshot Testing 1.18.0 版本发布:全新自定义转储策略与Android支持
Swift Snapshot Testing 是一个强大的 Swift 测试框架,它允许开发者通过捕获和比较应用程序的视觉输出、数据结构或其他可序列化内容来验证代码的正确性。这种测试方法特别适合UI组件、视图控制器和复杂数据结构的验证,能够有效减少回归测试的工作量。
1.18.0 版本亮点
新增自定义转储策略
1.18.0 版本引入了一个全新的 .customDump 策略,该策略通过新增的 SnapshotTestingCustomDump 模块提供。这个新策略是对现有 .dump 策略的改进和替代,后者已被标记为软弃用状态。
.customDump 策略提供了更灵活、更精确的数据结构转储能力,能够更好地处理复杂对象的比较和验证。与传统的 .dump 相比,它提供了:
- 更清晰的输出格式
- 更好的自定义选项
- 更精确的差异检测
- 改进的循环引用处理
开发者可以逐步迁移到新的 .customDump 策略,以获得更好的测试体验和更准确的测试结果。
Android平台支持
这个版本还增加了对Android平台的支持,这是由社区贡献者 @marcprux 实现的重大改进。这意味着开发者现在可以在Android项目中使用Swift Snapshot Testing框架,扩展了框架的应用范围。
Android支持包括:
- 兼容Android NDK工具链
- 适配Android文件系统特性
- 确保在Android环境下的稳定运行
这一改进使得跨平台Swift项目能够使用统一的快照测试方法,提高了代码质量和测试效率。
内联快照测试改进
assertInlineSnapshot 功能的 record 参数现在支持所有记录模式,解决了之前版本中的一些限制。这使得内联快照测试更加灵活和强大,开发者可以:
- 更方便地更新快照
- 更灵活地控制记录行为
- 更精确地管理测试数据
内联快照测试允许开发者将预期的输出直接嵌入测试代码中,提高了测试的可读性和维护性。
主线程检测问题修复
修复了在 @MainActor 注解的测试中可能出现的主线程检测问题。这个修复由 @peterkovacs 贡献,解决了在某些情况下测试可能错误地报告线程问题的bug。
这个改进特别重要,因为:
- 确保UI相关测试在主线程上正确执行
- 避免了误报的线程安全问题
- 提高了测试的稳定性和可靠性
升级建议
对于现有用户,建议:
- 逐步将
.dump策略迁移到新的.customDump策略 - 检查并更新使用了
assertInlineSnapshot的测试用例 - 对于跨平台项目,可以开始在Android环境中使用快照测试
新用户可以:
- 直接使用
.customDump策略开始编写测试 - 利用改进的内联快照功能简化测试编写
- 在Android项目中集成快照测试
总结
Swift Snapshot Testing 1.18.0 版本带来了多项重要改进和新功能,特别是自定义转储策略和Android支持,大大扩展了框架的实用性和适用范围。这些改进使得快照测试更加灵活、强大,能够满足更广泛的测试需求。
对于任何使用Swift进行开发的团队,特别是那些关注代码质量和测试覆盖率的团队,这个版本都值得考虑升级或采用。它不仅提高了测试的准确性,还简化了测试的编写和维护工作,是提升开发效率的有力工具。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00