在PromptFlow中集成GitHub Models的技术实现方案
2025-05-22 06:43:45作者:温玫谨Lighthearted
背景介绍
GitHub Models是一项基于Azure AI基础设施提供的模型服务,开发者可以通过GitHub Token访问托管在Azure上的多种AI模型。这项服务为开发者提供了便捷的模型调用方式,但在与PromptFlow集成时遇到了连接配置的挑战。
核心问题分析
PromptFlow作为微软开发的AI流程编排工具,原生支持Azure OpenAI和OpenAI的连接,但对于GitHub Models这种特殊认证方式的模型服务,需要特定的集成方案。主要存在两个技术难点:
- 认证机制差异:GitHub Models使用GitHub Token进行认证,而非标准的Azure API Key
- 多模型支持:GitHub Models端点支持多种模型切换,而标准连接方式通常针对单一模型设计
解决方案详解
自定义连接配置
虽然不能直接使用AzureOpenAIConnection,但可以通过CustomConnection类型实现GitHub Models的连接:
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/CustomConnection.schema.json
name: gh_models_connection
type: custom
configs:
endpoint: "https://models.inference.ai.azure.com"
secrets:
token: "<your_github_token>"
关键配置说明:
endpoint:固定为GitHub Models的服务地址token:需要替换为有效的GitHub个人访问令牌- 注意token不能使用环境变量引用,必须直接配置或通过安全方式注入
自定义Python工具实现
由于PromptFlow内置的LLM工具不支持GitHub Models,需要开发自定义Python工具:
from promptflow import tool
from azure.ai.inference import ChatCompletionsClient
from azure.core.credentials import AzureKeyCredential
@tool
def github_models_tool(
connection: CustomConnection,
messages: list,
model_name: str,
temperature: float = 0.7,
max_tokens: int = 256,
top_p: float = None
):
# 初始化客户端
client = ChatCompletionsClient(
endpoint=connection.configs['endpoint'],
credential=AzureKeyCredential(connection.secrets['token']),
)
# 调用模型
response = client.complete(
messages=messages,
model=model_name,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p
)
return response.choices[0].message.content
工具特点:
- 支持完整的聊天补全功能
- 可配置温度、最大token数等常见参数
- 通过model_name参数支持多种模型切换
流程集成配置
在flow.dag.yaml中配置自定义工具节点:
nodes:
- name: github_model_node
type: python
source:
type: code
path: github_models_tool.py
inputs:
connection: gh_models_connection
messages: ${inputs.messages}
model_name: "gpt-4"
temperature: 0.7
max_tokens: 256
高级应用建议
- 模型管理:可以扩展工具实现模型列表查询功能,动态获取可用模型
- 安全增强:在生产环境中,建议通过Azure Key Vault管理GitHub Token
- 性能优化:对于高频调用场景,可以实现连接池管理提高性能
- 错误处理:增强工具的错误处理和重试机制,提高稳定性
总结
通过CustomConnection和自定义Python工具的组合,开发者可以灵活地将GitHub Models集成到PromptFlow工作流中。这种方案不仅解决了认证问题,还保留了GitHub Models多模型支持的特性,为AI应用开发提供了更多可能性。未来随着PromptFlow的迭代,可能会原生支持更多类型的模型服务,但目前这种自定义集成方式已经能够满足大多数使用场景。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C097
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.55 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
232
97
暂无简介
Dart
728
175
React Native鸿蒙化仓库
JavaScript
287
340
Ascend Extension for PyTorch
Python
287
320
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
704
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
445
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19