在PromptFlow中集成GitHub Models的技术实现方案
2025-05-22 06:43:45作者:温玫谨Lighthearted
背景介绍
GitHub Models是一项基于Azure AI基础设施提供的模型服务,开发者可以通过GitHub Token访问托管在Azure上的多种AI模型。这项服务为开发者提供了便捷的模型调用方式,但在与PromptFlow集成时遇到了连接配置的挑战。
核心问题分析
PromptFlow作为微软开发的AI流程编排工具,原生支持Azure OpenAI和OpenAI的连接,但对于GitHub Models这种特殊认证方式的模型服务,需要特定的集成方案。主要存在两个技术难点:
- 认证机制差异:GitHub Models使用GitHub Token进行认证,而非标准的Azure API Key
- 多模型支持:GitHub Models端点支持多种模型切换,而标准连接方式通常针对单一模型设计
解决方案详解
自定义连接配置
虽然不能直接使用AzureOpenAIConnection,但可以通过CustomConnection类型实现GitHub Models的连接:
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/CustomConnection.schema.json
name: gh_models_connection
type: custom
configs:
endpoint: "https://models.inference.ai.azure.com"
secrets:
token: "<your_github_token>"
关键配置说明:
endpoint:固定为GitHub Models的服务地址token:需要替换为有效的GitHub个人访问令牌- 注意token不能使用环境变量引用,必须直接配置或通过安全方式注入
自定义Python工具实现
由于PromptFlow内置的LLM工具不支持GitHub Models,需要开发自定义Python工具:
from promptflow import tool
from azure.ai.inference import ChatCompletionsClient
from azure.core.credentials import AzureKeyCredential
@tool
def github_models_tool(
connection: CustomConnection,
messages: list,
model_name: str,
temperature: float = 0.7,
max_tokens: int = 256,
top_p: float = None
):
# 初始化客户端
client = ChatCompletionsClient(
endpoint=connection.configs['endpoint'],
credential=AzureKeyCredential(connection.secrets['token']),
)
# 调用模型
response = client.complete(
messages=messages,
model=model_name,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p
)
return response.choices[0].message.content
工具特点:
- 支持完整的聊天补全功能
- 可配置温度、最大token数等常见参数
- 通过model_name参数支持多种模型切换
流程集成配置
在flow.dag.yaml中配置自定义工具节点:
nodes:
- name: github_model_node
type: python
source:
type: code
path: github_models_tool.py
inputs:
connection: gh_models_connection
messages: ${inputs.messages}
model_name: "gpt-4"
temperature: 0.7
max_tokens: 256
高级应用建议
- 模型管理:可以扩展工具实现模型列表查询功能,动态获取可用模型
- 安全增强:在生产环境中,建议通过Azure Key Vault管理GitHub Token
- 性能优化:对于高频调用场景,可以实现连接池管理提高性能
- 错误处理:增强工具的错误处理和重试机制,提高稳定性
总结
通过CustomConnection和自定义Python工具的组合,开发者可以灵活地将GitHub Models集成到PromptFlow工作流中。这种方案不仅解决了认证问题,还保留了GitHub Models多模型支持的特性,为AI应用开发提供了更多可能性。未来随着PromptFlow的迭代,可能会原生支持更多类型的模型服务,但目前这种自定义集成方式已经能够满足大多数使用场景。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355