X-AnyLabeling项目关键点标注格式解析与YOLOv8训练适配指南
2025-06-07 19:46:44作者:裘晴惠Vivianne
问题背景
在使用X-AnyLabeling项目进行关键点标注时,部分用户发现导出的数据格式与YOLOv8训练所需的格式存在不兼容问题。本文将从技术角度深入分析这一问题的根源,并提供完整的解决方案。
关键点标注格式差异分析
X-AnyLabeling默认导出的关键点标注格式如下:
1 0.431282 0.556527 0.616769 0.713073 0.4625 0.613971 2 0.504167 0.573529 2 0.439583 0.538603 2 0.564583 0.509191 2 0.405208 0.439338 2 0.602083 0.573529 2 0.336458 0.536765 2 0.703125 0.797794 2 0.163542 0.766544 2 0.45625 0.810662 2 0.317708 0.801471 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
而YOLOv8训练所需的关键点标注格式要求如下:
- 每行代表一个标注对象
- 格式为:
class_id x_center y_center width height kp1_x kp1_y kp1_visible ... kpn_x kpn_y kpn_visible - 关键点可见性标志应为0(不可见)、1(可见)或2(遮挡)
格式转换解决方案
1. 手动转换方法
对于少量标注文件,可以手动进行格式转换:
- 提取边界框信息(前5个值)
- 将关键点信息按(x,y,visibility)三元组重新组织
- 确保每个关键点都有对应的可见性标志
2. 自动化脚本转换
对于大批量数据,建议使用Python脚本进行自动转换:
import os
def convert_keypoints(input_path, output_path):
with open(input_path, 'r') as f_in, open(output_path, 'w') as f_out:
for line in f_in:
parts = line.strip().split()
# 提取类别和边界框
class_id = parts[0]
bbox = parts[1:5]
# 处理关键点
keypoints = []
for i in range(5, len(parts), 3):
if i+2 >= len(parts):
break
x, y, vis = parts[i], parts[i+1], parts[i+2]
keypoints.extend([x, y, vis])
# 补全缺失的关键点
while len(keypoints) < 3*17: # 假设17个关键点
keypoints.extend(['0', '0', '0'])
# 写入新格式
new_line = ' '.join([class_id] + bbox + keypoints[:3*17]) + '\n'
f_out.write(new_line)
YOLOv8关键点训练配置建议
完成格式转换后,还需注意以下配置:
- 数据集YAML文件:确保正确指定关键点数量和名称
kpt_shape: [17, 3] # 17个关键点,每个点3个值(x,y,visibility)
- 模型配置文件:选择合适的关键点检测模型
task: pose
model: yolov8n-pose.yaml
- 训练参数:调整关键点相关权重
model.train(data='your_dataset.yaml', epochs=100, imgsz=640, kpt_loss=0.1)
常见问题排查
- 关键点数量不匹配:确保标注文件中关键点数量与模型配置一致
- 坐标范围错误:检查所有坐标值是否在0-1范围内
- 可见性标志无效:确认可见性标志仅为0、1或2
- 边界框格式错误:验证边界框是否为归一化的中心坐标和宽高
总结
X-AnyLabeling作为一款优秀的标注工具,其关键点标注功能需要经过适当格式转换才能适配YOLOv8训练。通过理解两种格式的差异并实施正确的转换方法,用户可以顺利地将标注数据用于姿态估计模型的训练。建议用户在批量处理前先小规模测试转换结果,确保数据格式完全符合YOLOv8的要求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134