Schedule-Free优化器在Adan算法中的适配思考
背景介绍
在深度学习优化算法领域,Schedule-Free优化器作为一种新兴技术引起了广泛关注。最近有开发者尝试将这一技术适配到Adan优化器上,Adan是一种结合了Nesterov动量的先进优化算法。这一适配过程需要对Schedule-Free的核心机制有深入理解,特别是它对传统优化器如AdamW所做的修改。
Schedule-Free与AdamW的关系
Schedule-Free优化器并非直接基于最新版本的PyTorch AdamW实现,而是参考了早期版本(如PyTorch 1.6)的代码结构。与当前复杂的AdamW实现相比,早期版本更加简洁明了,更适合作为修改的基础。
开发者需要注意,Schedule-Free实现中的foreach参数仅用于性能优化,在进行算法适配时可以暂时忽略这部分代码,专注于核心逻辑的修改。项目近期添加的"reference"版本实现更加直接,更适合作为研究基础。
适配Adan的关键考虑
将Schedule-Free思想应用于Adan优化器时,需要重点关注以下几个方面:
-
动量机制处理:Adan特有的Nesterov动量计算方式需要与Schedule-Free的无学习率调度特性相协调
-
参数更新逻辑:理解Schedule-Free如何修改传统优化器的参数更新步骤
-
状态变量管理:确保Adan的多个状态变量(m,v,n)与Schedule-Free的机制正确交互
-
预热阶段处理:Schedule-Free通常有特殊的预热期处理,需要与Adan的初始化相兼容
技术实现建议
对于想要进行此类适配的研究者,建议采取以下步骤:
-
首先分析Schedule-Free的reference实现,理解其核心修改点
-
研究Adan原始论文中的算法伪代码,明确其与AdamW的关键区别
-
从简化版本开始,先实现基础功能再考虑性能优化
-
特别注意梯度裁剪、权重衰减等辅助功能的正确处理
这种跨优化器的技术适配不仅有助于深入理解算法本质,还可能催生新的优化器变体,为深度学习训练提供更多选择。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00