首页
/ Schedule-Free优化器在Adan算法中的适配思考

Schedule-Free优化器在Adan算法中的适配思考

2025-07-04 01:51:11作者:卓艾滢Kingsley

背景介绍

在深度学习优化算法领域,Schedule-Free优化器作为一种新兴技术引起了广泛关注。最近有开发者尝试将这一技术适配到Adan优化器上,Adan是一种结合了Nesterov动量的先进优化算法。这一适配过程需要对Schedule-Free的核心机制有深入理解,特别是它对传统优化器如AdamW所做的修改。

Schedule-Free与AdamW的关系

Schedule-Free优化器并非直接基于最新版本的PyTorch AdamW实现,而是参考了早期版本(如PyTorch 1.6)的代码结构。与当前复杂的AdamW实现相比,早期版本更加简洁明了,更适合作为修改的基础。

开发者需要注意,Schedule-Free实现中的foreach参数仅用于性能优化,在进行算法适配时可以暂时忽略这部分代码,专注于核心逻辑的修改。项目近期添加的"reference"版本实现更加直接,更适合作为研究基础。

适配Adan的关键考虑

将Schedule-Free思想应用于Adan优化器时,需要重点关注以下几个方面:

  1. 动量机制处理:Adan特有的Nesterov动量计算方式需要与Schedule-Free的无学习率调度特性相协调

  2. 参数更新逻辑:理解Schedule-Free如何修改传统优化器的参数更新步骤

  3. 状态变量管理:确保Adan的多个状态变量(m,v,n)与Schedule-Free的机制正确交互

  4. 预热阶段处理:Schedule-Free通常有特殊的预热期处理,需要与Adan的初始化相兼容

技术实现建议

对于想要进行此类适配的研究者,建议采取以下步骤:

  1. 首先分析Schedule-Free的reference实现,理解其核心修改点

  2. 研究Adan原始论文中的算法伪代码,明确其与AdamW的关键区别

  3. 从简化版本开始,先实现基础功能再考虑性能优化

  4. 特别注意梯度裁剪、权重衰减等辅助功能的正确处理

这种跨优化器的技术适配不仅有助于深入理解算法本质,还可能催生新的优化器变体,为深度学习训练提供更多选择。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
162
2.05 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
199
279
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16
Git4ResearchGit4Research
Git4Research旨在构建一个开放、包容、协作的研究社区,让更多人能够参与到科学研究中,共同推动知识的进步。
HTML
23
1
apintoapinto
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
557
risc-v64-naruto-pirisc-v64-naruto-pi
基于QEMU构建的RISC-V64 SOC,支持Linux,baremetal, RTOS等,适合用来学习Linux,后续还会添加大量的controller,实现无需实体开发板,即可学习Linux和RISC-V架构
C
19
5