Kubernetes Autoscaler项目中addon-resizer组件1.8.23版本发布分析
Kubernetes Autoscaler项目中的addon-resizer组件近日发布了1.8.23版本。该组件是Kubernetes生态系统中一个重要的辅助工具,主要用于自动调整集群中各种附加组件的资源请求和限制。
addon-resizer的核心功能是根据集群节点数量的变化,动态调整部署的资源配额。这种机制确保了随着集群规模的扩大或缩小,相关组件能够获得适当的计算资源分配。在1.8.23版本中,开发者通过实际测试验证了该功能的可靠性。
测试过程展示了addon-resizer的工作机制:首先创建了一个包含2个节点的集群,然后部署了nanny-v1示例应用。通过修改部署配置指向新版本的容器镜像后,可以观察到初始的资源配额设置。当集群节点数量从2个扩展到5个时,addon-resizer自动将CPU限制从340m提升到400m,内存限制从220Mi增加到250Mi,相应的资源请求也同步进行了调整。
这种自动资源调整能力对于Kubernetes集群运维具有重要意义。它解决了传统静态资源配置方式在集群规模变化时可能导致的资源不足或浪费问题。通过动态调整,既保证了组件在集群扩容时有足够资源维持正常运行,又避免了在小规模集群中分配过多资源造成的浪费。
addon-resizer的实现原理是基于Kubernetes的控制器模式,持续监控集群状态并根据预设策略调整资源配置。这种设计体现了Kubernetes声明式API和自动化运维的理念,减轻了管理员手动调整资源配额的工作负担。
对于Kubernetes集群管理员而言,理解addon-resizer的工作原理和配置方法非常重要。合理使用这一工具可以显著提高集群资源利用率,同时确保关键组件始终获得适当的计算资源。新版本的发布意味着该功能的稳定性和可靠性得到了进一步验证,值得在生产环境中考虑采用。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00