EditSQL 项目使用教程
2024-09-28 21:48:00作者:范靓好Udolf
1. 项目目录结构及介绍
EditSQL 项目的目录结构如下:
editsql/
├── data/
│ └── database/
├── eval_scripts/
├── logs/
├── model/
│ └── bert/
│ └── data/
│ └── annotated_wikisql_and_PyTorch_bert_param/
├── README.md
├── LICENSE
├── logger.py
├── model_util.py
├── parse_args.py
├── postprocess_eval.py
├── preprocess.py
├── requirements.txt
├── run.py
├── run_atis.sh
├── run_cosql_cdseq2seq.sh
├── run_cosql_editsql.sh
├── run_sparc_cdseq2seq.sh
├── run_sparc_cdseq2seq_segment_copy.sh
├── run_sparc_editsql.sh
├── run_spider_editsql.sh
├── test_cosql_editsql.sh
├── test_sparc_editsql.sh
└── test_spider_editsql.sh
目录介绍
- data/: 存放数据库文件的目录。
- eval_scripts/: 存放评估脚本的目录。
- logs/: 存放实验日志的目录。
- model/: 存放模型相关文件的目录,包括预训练的 BERT 模型。
- README.md: 项目介绍文件。
- LICENSE: 项目许可证文件。
- logger.py: 日志记录模块。
- model_util.py: 模型工具模块。
- parse_args.py: 参数解析模块。
- postprocess_eval.py: 评估后处理模块。
- preprocess.py: 数据预处理模块。
- requirements.txt: 项目依赖文件。
- run.py: 项目启动文件。
- run_atis.sh: ATIS 实验启动脚本。
- run_cosql_cdseq2seq.sh: CoSQL CD-Seq2Seq 实验启动脚本。
- run_cosql_editsql.sh: CoSQL EditSQL 实验启动脚本。
- run_sparc_cdseq2seq.sh: SParC CD-Seq2Seq 实验启动脚本。
- run_sparc_cdseq2seq_segment_copy.sh: SParC CD-Seq2Seq 带段复制实验启动脚本。
- run_sparc_editsql.sh: SParC EditSQL 实验启动脚本。
- run_spider_editsql.sh: Spider EditSQL 实验启动脚本。
- test_cosql_editsql.sh: CoSQL EditSQL 测试脚本。
- test_sparc_editsql.sh: SParC EditSQL 测试脚本。
- test_spider_editsql.sh: Spider EditSQL 测试脚本。
2. 项目启动文件介绍
项目的启动文件是 run.py。该文件负责启动整个项目,并根据配置文件和命令行参数执行相应的实验或测试任务。
启动命令示例
python run.py --config_file config.json --experiment_name spider_editsql
参数说明
--config_file: 指定配置文件路径。--experiment_name: 指定实验名称,用于区分不同的实验任务。
3. 项目配置文件介绍
项目的配置文件通常是一个 JSON 文件,用于定义实验的各种参数,如数据路径、模型路径、训练参数等。
配置文件示例
{
"data_path": "data/database",
"model_path": "model/bert/data/annotated_wikisql_and_PyTorch_bert_param/pytorch_model_uncased_L-12_H-768_A-12.bin",
"batch_size": 32,
"learning_rate": 0.001,
"num_epochs": 10
}
配置项说明
- data_path: 数据文件路径。
- model_path: 预训练模型路径。
- batch_size: 批处理大小。
- learning_rate: 学习率。
- num_epochs: 训练轮数。
通过配置文件,用户可以灵活地调整实验参数,以适应不同的实验需求。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 Python案例资源下载 - 从入门到精通的完整项目代码合集 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.66 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
131
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
629
222
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
459
暂无简介
Dart
593
129
React Native鸿蒙化仓库
JavaScript
230
307
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
仓颉编译器源码及 cjdb 调试工具。
C++
123
576
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.51 K