《Generator Spec 项目技术文档》
2024-12-27 17:44:06作者:郜逊炳
1. 安装指南
在开始使用Generator Spec前,您需要确保已经安装了Ruby以及相关的开发环境。以下是安装Generator Spec的步骤:
- 将以下代码添加到您的Gemfile中,确保在
:test组中引入generator_spec。
group :test do
gem "generator_spec"
end
- 完成后,运行
bundle install命令安装所有依赖。
2. 项目的使用说明
Generator Spec是一个用于测试Rails生成器的工具,它通过使用RSpec和Rails::Generators::TestCase提供的断言方法来帮助开发者进行测试。
在使用前,您需要创建一个RSpec测试文件,通常位于spec/lib/generators目录下,该目录下的文件将被识别为生成器类型的示例组。
以下是一个简单的使用示例:
# spec/lib/generators/test/test_generator_spec.rb
require "generator_spec"
describe TestGenerator, type: :generator do
destination File.expand_path("../../tmp", __FILE__)
arguments %w(something)
before(:all) do
prepare_destination
run_generator
end
it "创建一个测试初始化文件" do
assert_file "config/initializers/test.rb", "# Initializer"
end
end
3. 项目API使用文档
Generator Spec提供了丰富的API供开发者使用,以下是一些主要方法:
describe:用于定义一个生成器的测试描述。destination:指定生成文件的目标路径。arguments:设置生成器需要的参数。before(:all):在所有测试之前运行的代码块,常用于准备测试环境。run_generator:执行生成器。assert_file:断言生成的文件存在并匹配给定的内容。
更多详细的使用方法和例子,请参考项目wiki。
4. 项目安装方式
项目的安装方式如安装指南部分所述,您需要将Generator Spec添加到您的项目Gemfile的:test组中,然后运行bundle install。确保您的开发环境中已经安装了Ruby和 Bundler。
以上就是Generator Spec项目的技术文档,希望对您使用该项目有所帮助。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
420
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
685
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869