Fluent Logger for Java 技术文档
1. 安装指南
1.1 使用一键式 JAR 包安装
您可以从以下地址下载 Fluent Logger for Java 的一键式 JAR 包:
wget http://central.maven.org/maven2/org/fluentd/fluent-logger/${logger.version}/fluent-logger-${logger.version}-jar-with-dependencies.jar
将下载的 JAR 包添加到您的类路径中,即可使用 Fluent Logger for Java。
1.2 从 Maven2 仓库安装
Fluent Logger for Java 已发布到 Maven2 仓库。您可以在 pom.xml
或 build.gradle
文件中添加以下依赖:
Maven:
<dependencies>
...
<dependency>
<groupId>org.fluentd</groupId>
<artifactId>fluent-logger</artifactId>
<version>${logger.version}</version>
</dependency>
...
</dependencies>
Gradle:
dependencies {
compile 'org.fluentd:fluent-logger:'+loggerVersion
}
1.3 从 GitHub 仓库安装
您可以使用 git 命令获取最新的源代码:
git clone git@github.com:fluent/fluent-logger-java.git
cd fluent-logger-java
mvn assembly:assembly
在 fluent-logger-java/target
目录中,您将得到名为 fluent-logger-${logger.version}-jar-with-dependencies.jar
的 JAR 包。更多详细信息,请查看 pom.xml
。
将 ${logger.version}
或 loggerVersion
替换为 Fluent Logger for Java 的当前版本。
2. 项目使用说明
以下是一个使用 Fluent Logger for Java 的简单示例:
import java.util.HashMap;
import java.util.Map;
import org.fluentd.logger.FluentLogger;
public class Main {
private static FluentLogger LOG = FluentLogger.getLogger("app");
public void doApplicationLogic() {
// ...
Map<String, Object> data = new HashMap<String, Object>();
data.put("from", "userA");
data.put("to", "userB");
LOG.log("follow", data);
// ...
}
}
要创建 Fluent Logger 实例,用户需要像 org.slf4j、org.log4j 日志库那样调用 getLogger
方法。此方法只需调用一次。默认情况下,日志记录器假设本地已启动 fluentd 守护进程。您也可以通过传递以下选项来指定远程日志记录器:
// 远程 fluentd
private static FluentLogger LOG = FluentLogger.getLogger("app", "remotehost", port);
然后,按照如下方式创建事件。这将向 fluentd 发送一个带有标签 app.follow
和属性 from
及 to
的事件。
当应用程序结束时,应显式调用 FluentLogger
类的 close
方法。该方法会关闭与 fluentd 的套接字连接。
FluentLogger.close();
3. 项目 API 使用文档
由于项目是基于 Java 编写,具体 API 使用请参考以下示例:
getLogger(String tag)
: 获取一个指定标签的日志记录器。getLogger(String tag, String host, int port)
: 获取一个指定标签和远程地址的日志记录器。log(String tag, Map<String, Object> data)
: 将事件记录到指定标签。close()
: 关闭日志记录器。
4. 项目安装方式
请参考上文“安装指南”部分,您可以选择使用一键式 JAR 包安装、从 Maven2 仓库安装或从 GitHub 仓库安装。根据您的项目需求选择合适的安装方式。
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0269get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java00AudioFly
AudioFly是一款基于LDM架构的文本转音频生成模型。它能生成采样率为44.1 kHz的高保真音频,且与文本提示高度一致,适用于音效、音乐及多事件音频合成等任务。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile08
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









