Fluent Logger for Java 技术文档
1. 安装指南
1.1 使用一键式 JAR 包安装
您可以从以下地址下载 Fluent Logger for Java 的一键式 JAR 包:
wget http://central.maven.org/maven2/org/fluentd/fluent-logger/${logger.version}/fluent-logger-${logger.version}-jar-with-dependencies.jar
将下载的 JAR 包添加到您的类路径中,即可使用 Fluent Logger for Java。
1.2 从 Maven2 仓库安装
Fluent Logger for Java 已发布到 Maven2 仓库。您可以在 pom.xml 或 build.gradle 文件中添加以下依赖:
Maven:
<dependencies>
...
<dependency>
<groupId>org.fluentd</groupId>
<artifactId>fluent-logger</artifactId>
<version>${logger.version}</version>
</dependency>
...
</dependencies>
Gradle:
dependencies {
compile 'org.fluentd:fluent-logger:'+loggerVersion
}
1.3 从 GitHub 仓库安装
您可以使用 git 命令获取最新的源代码:
git clone git@github.com:fluent/fluent-logger-java.git
cd fluent-logger-java
mvn assembly:assembly
在 fluent-logger-java/target 目录中,您将得到名为 fluent-logger-${logger.version}-jar-with-dependencies.jar 的 JAR 包。更多详细信息,请查看 pom.xml。
将 ${logger.version} 或 loggerVersion 替换为 Fluent Logger for Java 的当前版本。
2. 项目使用说明
以下是一个使用 Fluent Logger for Java 的简单示例:
import java.util.HashMap;
import java.util.Map;
import org.fluentd.logger.FluentLogger;
public class Main {
private static FluentLogger LOG = FluentLogger.getLogger("app");
public void doApplicationLogic() {
// ...
Map<String, Object> data = new HashMap<String, Object>();
data.put("from", "userA");
data.put("to", "userB");
LOG.log("follow", data);
// ...
}
}
要创建 Fluent Logger 实例,用户需要像 org.slf4j、org.log4j 日志库那样调用 getLogger 方法。此方法只需调用一次。默认情况下,日志记录器假设本地已启动 fluentd 守护进程。您也可以通过传递以下选项来指定远程日志记录器:
// 远程 fluentd
private static FluentLogger LOG = FluentLogger.getLogger("app", "remotehost", port);
然后,按照如下方式创建事件。这将向 fluentd 发送一个带有标签 app.follow 和属性 from 及 to 的事件。
当应用程序结束时,应显式调用 FluentLogger 类的 close 方法。该方法会关闭与 fluentd 的套接字连接。
FluentLogger.close();
3. 项目 API 使用文档
由于项目是基于 Java 编写,具体 API 使用请参考以下示例:
getLogger(String tag): 获取一个指定标签的日志记录器。getLogger(String tag, String host, int port): 获取一个指定标签和远程地址的日志记录器。log(String tag, Map<String, Object> data): 将事件记录到指定标签。close(): 关闭日志记录器。
4. 项目安装方式
请参考上文“安装指南”部分,您可以选择使用一键式 JAR 包安装、从 Maven2 仓库安装或从 GitHub 仓库安装。根据您的项目需求选择合适的安装方式。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00