Fluent Logger for Java 技术文档
1. 安装指南
1.1 使用一键式 JAR 包安装
您可以从以下地址下载 Fluent Logger for Java 的一键式 JAR 包:
wget http://central.maven.org/maven2/org/fluentd/fluent-logger/${logger.version}/fluent-logger-${logger.version}-jar-with-dependencies.jar
将下载的 JAR 包添加到您的类路径中,即可使用 Fluent Logger for Java。
1.2 从 Maven2 仓库安装
Fluent Logger for Java 已发布到 Maven2 仓库。您可以在 pom.xml 或 build.gradle 文件中添加以下依赖:
Maven:
<dependencies>
...
<dependency>
<groupId>org.fluentd</groupId>
<artifactId>fluent-logger</artifactId>
<version>${logger.version}</version>
</dependency>
...
</dependencies>
Gradle:
dependencies {
compile 'org.fluentd:fluent-logger:'+loggerVersion
}
1.3 从 GitHub 仓库安装
您可以使用 git 命令获取最新的源代码:
git clone git@github.com:fluent/fluent-logger-java.git
cd fluent-logger-java
mvn assembly:assembly
在 fluent-logger-java/target 目录中,您将得到名为 fluent-logger-${logger.version}-jar-with-dependencies.jar 的 JAR 包。更多详细信息,请查看 pom.xml。
将 ${logger.version} 或 loggerVersion 替换为 Fluent Logger for Java 的当前版本。
2. 项目使用说明
以下是一个使用 Fluent Logger for Java 的简单示例:
import java.util.HashMap;
import java.util.Map;
import org.fluentd.logger.FluentLogger;
public class Main {
private static FluentLogger LOG = FluentLogger.getLogger("app");
public void doApplicationLogic() {
// ...
Map<String, Object> data = new HashMap<String, Object>();
data.put("from", "userA");
data.put("to", "userB");
LOG.log("follow", data);
// ...
}
}
要创建 Fluent Logger 实例,用户需要像 org.slf4j、org.log4j 日志库那样调用 getLogger 方法。此方法只需调用一次。默认情况下,日志记录器假设本地已启动 fluentd 守护进程。您也可以通过传递以下选项来指定远程日志记录器:
// 远程 fluentd
private static FluentLogger LOG = FluentLogger.getLogger("app", "remotehost", port);
然后,按照如下方式创建事件。这将向 fluentd 发送一个带有标签 app.follow 和属性 from 及 to 的事件。
当应用程序结束时,应显式调用 FluentLogger 类的 close 方法。该方法会关闭与 fluentd 的套接字连接。
FluentLogger.close();
3. 项目 API 使用文档
由于项目是基于 Java 编写,具体 API 使用请参考以下示例:
getLogger(String tag): 获取一个指定标签的日志记录器。getLogger(String tag, String host, int port): 获取一个指定标签和远程地址的日志记录器。log(String tag, Map<String, Object> data): 将事件记录到指定标签。close(): 关闭日志记录器。
4. 项目安装方式
请参考上文“安装指南”部分,您可以选择使用一键式 JAR 包安装、从 Maven2 仓库安装或从 GitHub 仓库安装。根据您的项目需求选择合适的安装方式。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00