PHPUnit 测试框架中关于弃用通知处理的改进
PHPUnit 作为PHP生态中最流行的测试框架之一,在10.x和11.x版本中对弃用通知(deprecation notice)的处理机制进行了重要改进。这些变化直接影响着开发者在跨版本兼容性测试中的体验。
背景与问题
在PHPUnit 10.0版本中,框架引入了一个有争议的设计决策:将PHPUnit自身的弃用通知与PHP语言的弃用通知同等对待,都会影响测试运行的退出码。这一设计给需要同时支持多个PHPUnit版本的项目带来了诸多不便:
- 项目必须在每个PHPUnit版本发布后立即更新测试套件,以消除新的弃用警告
- 需要维护额外的迁移配置步骤和多个配置文件
- 对于同时支持PHPUnit 9.x的项目,配置转换变得更加复杂
特别值得注意的是,当开发者尝试使用#[CoversClass]
注解来覆盖trait时,PHPUnit 11.x会抛出弃用通知,建议改用#[CoversTrait]
。但由于PHPUnit 10.x不支持#[CoversTrait]
注解,这就形成了一个无法回避的兼容性问题。
解决方案
PHPUnit 10.5和11.3版本引入了对弃用通知的更精细控制,将PHPUnit自身的弃用通知与PHP语言的弃用通知(E_DEPRECATED
/E_USER_DEPRECATED
)分开处理。开发者现在可以通过CLI参数或XML配置文件选择以下四种处理模式之一:
- 既不因PHP弃用通知失败,也不因PHPUnit弃用通知失败
- 因PHP弃用通知失败,但不因PHPUnit弃用通知失败
- 不因PHP弃用通知失败,但因PHPUnit弃用通知失败
- 既因PHP弃用通知失败,也因PHPUnit弃用通知失败
技术实现细节
这种分离处理的核心在于PHPUnit内部对不同类型的弃用通知进行了分类。PHP语言的弃用通知通常来自被测试代码,而PHPUnit的弃用通知则来自测试框架本身。通过区分这两类通知,开发者可以:
- 严格检查生产代码的质量(通过捕获PHP弃用通知)
- 同时灵活处理测试框架的演进(通过选择性忽略PHPUnit弃用通知)
最佳实践建议
对于需要维护跨版本兼容性的项目,推荐采用"因PHP弃用通知失败,但不因PHPUnit弃用通知失败"的模式。这种配置可以:
- 确保生产代码符合最新PHP版本的要求
- 允许测试代码逐步适应PHPUnit的新特性
- 减少因测试框架升级带来的维护负担
对于即将升级到新PHPUnit主版本的项目,可以临时切换到"既因PHP弃用通知失败,也因PHPUnit弃用通知失败"的模式,以便一次性解决所有兼容性问题。
总结
PHPUnit的这一改进体现了测试框架设计的人性化思考,平衡了代码质量要求与开发效率之间的关系。通过提供更灵活的通知处理机制,PHPUnit继续巩固了其在PHP测试领域的重要地位,为开发者提供了更好的升级路径和兼容性支持。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









