Giskard项目中使用Ollama本地嵌入模型的配置方法
2025-06-13 03:23:00作者:董斯意
在自然语言处理应用中,嵌入模型(Embedding Model)是将文本转换为向量表示的核心组件。Giskard作为一个开源AI测试框架,支持用户配置不同的嵌入模型客户端。本文将详细介绍如何在Giskard项目中配置使用Ollama本地运行的嵌入模型。
背景与现状
当前Giskard官方文档中主要介绍了基础模型的Ollama客户端配置,但尚未包含嵌入模型的具体配置说明。实际上,Giskard框架通过其兼容接口,可以无缝对接Ollama本地服务。
配置步骤详解
-
环境准备 确保已安装并运行Ollama服务,默认监听端口为11434。建议先测试基础模型如llama3能否正常运行。
-
客户端初始化 使用兼容客户端连接本地Ollama服务:
from openai import OpenAI _client = OpenAI(base_url="http://localhost:11434/v1/", api_key="ollama") -
嵌入模型选择 Ollama支持多种嵌入模型,推荐使用:
nomic-embed-text:通用文本嵌入模型llama3-embed:基于Llama3的嵌入版本
-
完整配置示例
from giskard.llm.client.openai import OpenAIClient from giskard.llm.embeddings.openai import OpenAIEmbedding from giskard.llm import set_default_client from giskard.llm.embeddings import set_default_embedding # 初始化客户端 _client = OpenAI(base_url="http://localhost:11434/v1/", api_key="ollama") # 配置默认模型 llm_client = OpenAIClient(model="llama3.2", client=_client) emb_client = OpenAIEmbedding(model="nomic-embed-text", client=_client) # 设置为全局默认 set_default_client(llm_client) set_default_embedding(emb_client)
技术细节说明
-
兼容性设计: Giskard采用兼容接口,使得任何符合API标准的服务(包括Ollama)都能无缝集成。
-
性能考量:
- 本地运行的嵌入模型会消耗显存,建议根据GPU配置选择合适模型
- 批处理请求可以显著提升嵌入生成效率
-
模型选择建议:
- 英文场景:优先考虑
nomic-embed-text - 多语言场景:可尝试
bge系列模型 - 需要长文本支持:选择支持8k以上上下文的模型
- 英文场景:优先考虑
常见问题排查
-
连接失败:
- 检查Ollama服务是否正常运行(
ollama serve) - 验证端口是否被占用或被防火墙拦截
- 检查Ollama服务是否正常运行(
-
模型加载失败:
- 确保已通过
ollama pull下载目标模型 - 检查模型名称拼写是否正确
- 确保已通过
-
性能问题:
- 调整Ollama的
num_ctx和num_gpu参数 - 考虑使用量化版本的模型减少资源占用
- 调整Ollama的
进阶用法
对于生产环境部署,建议:
- 使用Docker容器化Ollama服务
- 配置负载均衡处理多并发请求
- 实现嵌入结果的缓存机制
- 监控模型的内存和计算资源使用情况
通过以上配置,开发者可以在Giskard框架中充分利用本地Ollama服务的嵌入能力,既保证了数据隐私,又能获得可定制的文本嵌入功能。这种方案特别适合对数据安全性要求较高的企业应用场景。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0102
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
288
340
暂无简介
Dart
729
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
448
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
239
100
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
452
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705