Giskard项目中使用Ollama本地嵌入模型的配置方法
2025-06-13 01:33:05作者:董斯意
在自然语言处理应用中,嵌入模型(Embedding Model)是将文本转换为向量表示的核心组件。Giskard作为一个开源AI测试框架,支持用户配置不同的嵌入模型客户端。本文将详细介绍如何在Giskard项目中配置使用Ollama本地运行的嵌入模型。
背景与现状
当前Giskard官方文档中主要介绍了基础模型的Ollama客户端配置,但尚未包含嵌入模型的具体配置说明。实际上,Giskard框架通过其兼容接口,可以无缝对接Ollama本地服务。
配置步骤详解
-
环境准备 确保已安装并运行Ollama服务,默认监听端口为11434。建议先测试基础模型如llama3能否正常运行。
-
客户端初始化 使用兼容客户端连接本地Ollama服务:
from openai import OpenAI _client = OpenAI(base_url="http://localhost:11434/v1/", api_key="ollama") -
嵌入模型选择 Ollama支持多种嵌入模型,推荐使用:
nomic-embed-text:通用文本嵌入模型llama3-embed:基于Llama3的嵌入版本
-
完整配置示例
from giskard.llm.client.openai import OpenAIClient from giskard.llm.embeddings.openai import OpenAIEmbedding from giskard.llm import set_default_client from giskard.llm.embeddings import set_default_embedding # 初始化客户端 _client = OpenAI(base_url="http://localhost:11434/v1/", api_key="ollama") # 配置默认模型 llm_client = OpenAIClient(model="llama3.2", client=_client) emb_client = OpenAIEmbedding(model="nomic-embed-text", client=_client) # 设置为全局默认 set_default_client(llm_client) set_default_embedding(emb_client)
技术细节说明
-
兼容性设计: Giskard采用兼容接口,使得任何符合API标准的服务(包括Ollama)都能无缝集成。
-
性能考量:
- 本地运行的嵌入模型会消耗显存,建议根据GPU配置选择合适模型
- 批处理请求可以显著提升嵌入生成效率
-
模型选择建议:
- 英文场景:优先考虑
nomic-embed-text - 多语言场景:可尝试
bge系列模型 - 需要长文本支持:选择支持8k以上上下文的模型
- 英文场景:优先考虑
常见问题排查
-
连接失败:
- 检查Ollama服务是否正常运行(
ollama serve) - 验证端口是否被占用或被防火墙拦截
- 检查Ollama服务是否正常运行(
-
模型加载失败:
- 确保已通过
ollama pull下载目标模型 - 检查模型名称拼写是否正确
- 确保已通过
-
性能问题:
- 调整Ollama的
num_ctx和num_gpu参数 - 考虑使用量化版本的模型减少资源占用
- 调整Ollama的
进阶用法
对于生产环境部署,建议:
- 使用Docker容器化Ollama服务
- 配置负载均衡处理多并发请求
- 实现嵌入结果的缓存机制
- 监控模型的内存和计算资源使用情况
通过以上配置,开发者可以在Giskard框架中充分利用本地Ollama服务的嵌入能力,既保证了数据隐私,又能获得可定制的文本嵌入功能。这种方案特别适合对数据安全性要求较高的企业应用场景。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869