GLaMM模型训练全指南:从预训练到多任务微调
2025-06-10 00:00:46作者:魏献源Searcher
前言
GLaMM(Grounding Large Multimodal Model)是一个强大的多模态基础模型,专注于视觉-语言理解与生成任务。本文将全面介绍GLaMM模型的训练流程,包括预训练阶段和下游任务的微调方法,帮助研究人员和开发者掌握这一先进模型的使用技巧。
模型概述
GLaMM模型首先在GranD数据集上进行预训练,然后在多个下游任务上进行微调,包括:
- 基于对话的视觉定位生成(Grounded Conversation Generation, GCG)
- 指代表达分割(Referring Expression Segmentation)
- 区域级图像描述生成(Region-level Captioning)
- 图像级描述生成(Image-level Captioning)
训练准备
数据准备
训练GLaMM需要组织多个开源数据集,建议按照以下结构整理数据目录:
data/
├── coco_caption/
├── refcoco/
├── visual_genome/
├── ade20k/
└── ...
预训练模型准备
训练需要两个关键预训练模型:
- GLaMM GranD预训练模型(Hugging Face格式)
- 基于SAM的视觉编码器检查点(用于图像分割任务)
下游任务微调
1. 基于对话的视觉定位生成(GCG)
GCG任务使模型能够根据对话内容定位图像中的特定区域。训练使用以下数据集组合:
- GranD-f数据集:RefCoco_GCG、PSG_GCG、Flickr_GCG、GranDf_GCG
- 语义分割数据集:ade20k、cocostuff、pascal_part等
训练命令示例:
deepspeed --master_port $MASTER_PORT train.py \
--version $PRETRAINED_HF_PATH \
--dataset_dir ./data/ \
--vision_pretrained $GROUNDING_ENC_CKPT_PATH \
--exp_name $OUTPUT_DIR_PATH \
--lora_r 8 \
--lr 3e-4 \
--pretrained \
--use_segm_data \
--seg_dataset "Semantic_Segm||RefCoco_GCG||PSG_GCG||Flickr_GCG||GranDf_GCG" \
--segm_sample_rates "1,3,3,3,1" \
--val_dataset "FlickrGCGVal|RefCocoGCGVal|PsgGCGVal" \
--epochs 10 \
--steps_per_epoch 500 \
--mask_validation
关键参数说明:
lora_r:LoRA适配器的秩,控制参数效率segm_sample_rates:不同数据集的采样比例mask_validation:启用分割掩码验证
2. 区域级图像描述生成
此任务使模型能够为图像中的特定区域生成描述文本。支持两种数据集:
RefCOCOg数据集训练
deepspeed --master_port $MASTER_PORT train.py \
--version $PRETRAINED_HF_PATH \
--dataset_dir ./data/ \
--vision_pretrained $GROUNDING_ENC_CKPT_PATH \
--exp_name $OUTPUT_DIR_PATH \
--lora_r 8 \
--lr 3e-4 \
--pretrained \
--use_reg_data \
--reg_dataset 'RefCocoG_Reg' \
--reg_sample_rates "1" \
--val_dataset 'RefCOCOgRegVal' \
--epochs 5 \
--steps_per_epoch 500
Visual Genome数据集训练
deepspeed --master_port $MASTER_PORT train.py \
--version $PRETRAINED_HF_PATH \
--dataset_dir ./data/ \
--vision_pretrained $GROUNDING_ENC_CKPT_PATH \
--exp_name $OUTPUT_DIR_PATH \
--lora_r 8 \
--lr 3e-4 \
--pretrained \
--use_reg_data \
--reg_dataset 'VisGen_Reg' \
--reg_sample_rates "1" \
--val_dataset 'VisGenomeRegVal' \
--epochs 5 \
--steps_per_epoch 500
3. 指代表达分割
此任务使模型能够根据自然语言描述定位图像中的特定区域。
deepspeed --master_port $MASTER_PORT train.py \
--version $PRETRAINED_HF_PATH \
--dataset_dir ./data/ \
--vision_pretrained $GROUNDING_ENC_CKPT_PATH \
--exp_name $OUTPUT_DIR_PATH \
--lora_r 8 \
--lr 3e-4 \
--pretrained \
--use_segm_data \
--seg_dataset "Refer_Segm" \
--segm_sample_rates "1" \
--refer_segm_data "refcoco||refcoco+||refcocog" \
--val_dataset "RefCOCOgSegVal" \
--epochs 5 \
--steps_per_epoch 350 \
--mask_validation
4. 多任务联合训练
为了实现模型的综合能力,可以同时训练多个任务:
deepspeed --master_port $MASTER_PORT train.py \
--version $PRETRAINED_HF_PATH \
--dataset_dir ./data/ \
--vision_pretrained $GROUNDING_ENC_CKPT_PATH \
--exp_name $OUTPUT_DIR_PATH \
--lora_r 8 \
--lr 3e-4 \
--pretrained \
--use_cap_data \
--use_reg_data \
--use_segm_data \
-cap_dataset "CocoCap||LLaVaInstruct" \
--cap_sample_rate "1,2" \
--reg_dataset "RefCoco_Reg||RefCocoG_Reg||RefCocoP_Reg||VisGen_Reg||FlickrGCGVal" \
--reg_sample_rates "1,1,1,1,1" \
-seg_dataset "Semantic_Segm||Refer_Segm||RefCoco_GCG||PSG_GCG||Flickr_GCG||GranDf_GCG" \
--segm_sample_rates "4,3,2,2,2,1" \
--val_dataset "FlickrGCGVal|RefCocoGCGVal|PsgGCGVal" \
--epochs 10 \
--steps_per_epoch 500
LoRA权重合并
GLaMM使用LoRA(Low-Rank Adaptation)进行高效微调。训练完成后,需要合并LoRA权重:
- 首先转换DeepSpeed检查点:
python zero_to_fp32.py . ./pytorch_model.bin
- 然后合并LoRA权重:
export PYTHONPATH="./:$PYTHONPATH"
python scripts/merge_lora_weights.py \
--version 'MBZUAI/GLaMM-GranD-Pretrained' \
--weight 'path/to/pytorch_model.bin' \
--save_path 'path/to/save/the/merged/model/in/HF/format'
训练建议
- 硬件配置:建议使用多GPU环境,至少4张A100 80GB显卡
- 学习率调整:根据任务复杂度调整学习率,简单任务可尝试5e-5,复杂任务可提高到1e-4
- 批次大小:根据显存容量调整,确保充分利用GPU资源
- 训练监控:建议使用TensorBoard或WandB监控训练过程
常见问题
- 显存不足:尝试减小批次大小或使用梯度累积
- 训练不稳定:降低学习率或使用学习率预热
- 过拟合:增加数据增强或使用早停策略
通过本指南,您应该能够成功训练GLaMM模型并在各种视觉-语言任务上获得优异性能。根据具体应用场景,可以灵活调整训练策略和数据组合。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Launch4j中文版:Java应用程序打包成EXE的终极解决方案
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
暂无简介
Dart
655
149
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
642
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
仓颉编译器源码及 cjdb 调试工具。
C++
130
864
React Native鸿蒙化仓库
JavaScript
251
320
仓颉编程语言运行时与标准库。
Cangjie
138
874