Liger-Kernel中的分组损失函数设计与GRPO实现思考
2025-06-10 19:07:34作者:魏侃纯Zoe
引言
在强化学习领域,特别是语言模型优化方面,分组策略优化(Group Relative Policy Optimization, GRPO)正逐渐成为研究热点。作为LinkedIn开源的Liger-Kernel项目,其灵活的损失函数设计架构为这类新型优化算法的实现提供了良好基础。本文将深入探讨如何在Liger-Kernel中设计分组损失函数支持GRPO等算法。
GRPO算法核心思想
GRPO是一种基于分组比较的强化学习优化方法,与传统偏好学习不同,它不需要明确的"选择/拒绝"标签对。GRPO的核心在于:
- 通过分组比较策略表现
- 计算组内相对优势
- 结合KL散度进行策略优化
这种方法的优势在于能够更灵活地处理多组样本,而不受限于严格的二元偏好结构。
Liger-Kernel的架构设计考量
Liger-Kernel现有的LigerFusedLinearPreferenceBase
类主要针对传统的偏好学习场景,其假设批次数据包含明确的"选择/拒绝"对。然而,GRPO的工作机制有所不同:
- 需要同时计算主模型和参考模型的token级对数概率
- 处理的是组内相对比较而非绝对偏好
- 损失计算涉及优势函数和KL散度平衡
分组损失函数实现方案
基于GRPO的特性,可以设计专门的LigerFusedLinearGroupingBase
基类。该类的核心功能应包括:
- 并行计算能力:同时处理主模型和参考模型的前向传播
- 分组统计功能:支持组内奖励归一化计算
- 灵活损失组合:允许调整KL散度权重系数
一个典型的GRPO损失函数实现可能如下:
def grpo_loss(logps, rewards, ref_logps, beta=0.1):
# KL散度计算
kl_div = torch.exp(ref_logps - logps) - (ref_logps - logps) - 1
# 奖励归一化
mean_rewards = rewards.mean()
std_rewards = rewards.std()
advantages = (rewards - mean_rewards) / (std_rewards + 1e-4)
# 组合损失项
per_token_loss = torch.exp(logps - logps.detach()) * advantages.unsqueeze(1)
per_token_loss = -(per_token_loss - beta * kl_div)
return per_token_loss.mean()
工程实现挑战
在实际实现过程中,需要注意以下技术要点:
- 内存效率:同时保持两个模型的计算图需要精心设计内存管理
- 梯度计算:确保参考模型的梯度不被传播
- 批次处理:高效处理分组数据结构的批次加载
- 数值稳定性:奖励归一化过程中的数值处理
未来发展展望
随着研究的深入,分组比较类算法可能会衍生出多种变体。Liger-Kernel的分组损失基础架构应考虑:
- 可扩展的接口设计
- 模块化的损失组件
- 灵活的归一化策略支持
- 多种KL约束形式的兼容
结语
Liger-Kernel作为强化学习训练的基础设施,通过引入分组损失支持,能够更好地适应GRPO等新兴算法。这种设计不仅满足了当前研究需求,也为未来可能的算法变体提供了扩展空间。随着TRL等框架开始支持GRPO训练器,底层基础设施的完善将极大促进相关研究的开展。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
186

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
881
521

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
361
381

React Native鸿蒙化仓库
C++
182
264

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
613
60

open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
118
78