Liger-Kernel中的分组损失函数设计与GRPO实现思考
2025-06-10 17:09:16作者:魏侃纯Zoe
引言
在强化学习领域,特别是语言模型优化方面,分组策略优化(Group Relative Policy Optimization, GRPO)正逐渐成为研究热点。作为LinkedIn开源的Liger-Kernel项目,其灵活的损失函数设计架构为这类新型优化算法的实现提供了良好基础。本文将深入探讨如何在Liger-Kernel中设计分组损失函数支持GRPO等算法。
GRPO算法核心思想
GRPO是一种基于分组比较的强化学习优化方法,与传统偏好学习不同,它不需要明确的"选择/拒绝"标签对。GRPO的核心在于:
- 通过分组比较策略表现
- 计算组内相对优势
- 结合KL散度进行策略优化
这种方法的优势在于能够更灵活地处理多组样本,而不受限于严格的二元偏好结构。
Liger-Kernel的架构设计考量
Liger-Kernel现有的LigerFusedLinearPreferenceBase类主要针对传统的偏好学习场景,其假设批次数据包含明确的"选择/拒绝"对。然而,GRPO的工作机制有所不同:
- 需要同时计算主模型和参考模型的token级对数概率
- 处理的是组内相对比较而非绝对偏好
- 损失计算涉及优势函数和KL散度平衡
分组损失函数实现方案
基于GRPO的特性,可以设计专门的LigerFusedLinearGroupingBase基类。该类的核心功能应包括:
- 并行计算能力:同时处理主模型和参考模型的前向传播
- 分组统计功能:支持组内奖励归一化计算
- 灵活损失组合:允许调整KL散度权重系数
一个典型的GRPO损失函数实现可能如下:
def grpo_loss(logps, rewards, ref_logps, beta=0.1):
# KL散度计算
kl_div = torch.exp(ref_logps - logps) - (ref_logps - logps) - 1
# 奖励归一化
mean_rewards = rewards.mean()
std_rewards = rewards.std()
advantages = (rewards - mean_rewards) / (std_rewards + 1e-4)
# 组合损失项
per_token_loss = torch.exp(logps - logps.detach()) * advantages.unsqueeze(1)
per_token_loss = -(per_token_loss - beta * kl_div)
return per_token_loss.mean()
工程实现挑战
在实际实现过程中,需要注意以下技术要点:
- 内存效率:同时保持两个模型的计算图需要精心设计内存管理
- 梯度计算:确保参考模型的梯度不被传播
- 批次处理:高效处理分组数据结构的批次加载
- 数值稳定性:奖励归一化过程中的数值处理
未来发展展望
随着研究的深入,分组比较类算法可能会衍生出多种变体。Liger-Kernel的分组损失基础架构应考虑:
- 可扩展的接口设计
- 模块化的损失组件
- 灵活的归一化策略支持
- 多种KL约束形式的兼容
结语
Liger-Kernel作为强化学习训练的基础设施,通过引入分组损失支持,能够更好地适应GRPO等新兴算法。这种设计不仅满足了当前研究需求,也为未来可能的算法变体提供了扩展空间。随着TRL等框架开始支持GRPO训练器,底层基础设施的完善将极大促进相关研究的开展。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882