Liger-Kernel中的分组损失函数设计与GRPO实现思考
2025-06-10 04:50:55作者:魏侃纯Zoe
引言
在强化学习领域,特别是语言模型优化方面,分组策略优化(Group Relative Policy Optimization, GRPO)正逐渐成为研究热点。作为LinkedIn开源的Liger-Kernel项目,其灵活的损失函数设计架构为这类新型优化算法的实现提供了良好基础。本文将深入探讨如何在Liger-Kernel中设计分组损失函数支持GRPO等算法。
GRPO算法核心思想
GRPO是一种基于分组比较的强化学习优化方法,与传统偏好学习不同,它不需要明确的"选择/拒绝"标签对。GRPO的核心在于:
- 通过分组比较策略表现
- 计算组内相对优势
- 结合KL散度进行策略优化
这种方法的优势在于能够更灵活地处理多组样本,而不受限于严格的二元偏好结构。
Liger-Kernel的架构设计考量
Liger-Kernel现有的LigerFusedLinearPreferenceBase
类主要针对传统的偏好学习场景,其假设批次数据包含明确的"选择/拒绝"对。然而,GRPO的工作机制有所不同:
- 需要同时计算主模型和参考模型的token级对数概率
- 处理的是组内相对比较而非绝对偏好
- 损失计算涉及优势函数和KL散度平衡
分组损失函数实现方案
基于GRPO的特性,可以设计专门的LigerFusedLinearGroupingBase
基类。该类的核心功能应包括:
- 并行计算能力:同时处理主模型和参考模型的前向传播
- 分组统计功能:支持组内奖励归一化计算
- 灵活损失组合:允许调整KL散度权重系数
一个典型的GRPO损失函数实现可能如下:
def grpo_loss(logps, rewards, ref_logps, beta=0.1):
# KL散度计算
kl_div = torch.exp(ref_logps - logps) - (ref_logps - logps) - 1
# 奖励归一化
mean_rewards = rewards.mean()
std_rewards = rewards.std()
advantages = (rewards - mean_rewards) / (std_rewards + 1e-4)
# 组合损失项
per_token_loss = torch.exp(logps - logps.detach()) * advantages.unsqueeze(1)
per_token_loss = -(per_token_loss - beta * kl_div)
return per_token_loss.mean()
工程实现挑战
在实际实现过程中,需要注意以下技术要点:
- 内存效率:同时保持两个模型的计算图需要精心设计内存管理
- 梯度计算:确保参考模型的梯度不被传播
- 批次处理:高效处理分组数据结构的批次加载
- 数值稳定性:奖励归一化过程中的数值处理
未来发展展望
随着研究的深入,分组比较类算法可能会衍生出多种变体。Liger-Kernel的分组损失基础架构应考虑:
- 可扩展的接口设计
- 模块化的损失组件
- 灵活的归一化策略支持
- 多种KL约束形式的兼容
结语
Liger-Kernel作为强化学习训练的基础设施,通过引入分组损失支持,能够更好地适应GRPO等新兴算法。这种设计不仅满足了当前研究需求,也为未来可能的算法变体提供了扩展空间。随着TRL等框架开始支持GRPO训练器,底层基础设施的完善将极大促进相关研究的开展。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0291ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++058Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析2 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp博客页面工作坊中的断言方法优化建议5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析7 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 8 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析9 freeCodeCamp Cafe Menu项目中link元素的void特性解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
173
2.06 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
201
279

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
956
565

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

Git4Research旨在构建一个开放、包容、协作的研究社区,让更多人能够参与到开放研究中,共同推动知识的进步。
HTML
28
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.01 K
397

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
348
1.34 K

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
113
625